Synthetic diagnostics tools for identification of the L-H transition in ITER PFPO campaigns

A. Medvedeva¹, M. Schneider¹, S.D. Pinches¹, M. De Bock¹, R. Khusnutdinov^{2,3}, V. Neverov², S. Denk⁴, X. Bonnin¹, S.H. Kim¹, A. Polevoi¹

¹ ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France ² National Research Centre 'Kurchatov Institute', Moscow 123182, Russia

- National Research Centre Kurchatov Institute, Moscow 123162, Russia

³National Research Nuclear University MEPhI, Moscow 115409, Russia

⁴ Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America

A. Medvedeva is supported through the Monaco/ITER postdoctoral fellowship program Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

A. Medvedeva – 4th IAEA TM on Fusion Data Processing, Validation and Analysis

H plasma 6 ml	H, ⁴ He plasmas 18 m	H, ⁴ He plasmas 21 m	D, DT
↓ 1 st plasma Assembly / commissioning	Pre-Fusion Power Operat. 1	Pre-Fusion Power Operat. 2	Fusion Power Operation
Demonstrate integration of tokamak core components	 Commissioning 7.5MA/2.65T L-mode 5MA/1.8T H-mode 	 Raise pulse duration and current & power to 15 MA and 73 MW 7.5MA/2.65T H-mode 	 •Q=10, long-pulse scenarios •Burning plasma physics
First Plasma	PFPO-1	PFPO-2	FPO
	_	_	

- Access conditions to H-mode
- Characterization of properties of ELMy H-modes
- Early indications of requirements for future heating and current drive upgrades

How to detect the L-H transition with available diagnostics?

A. Medvedeva – 4th IAEA TM on Fusion Data Processing, Validation and Analysis

Indications of the L-H transition

- Heat & particle transport reduced \rightarrow pressure increased
- E_r increased \rightarrow poloidal rotation enhanced
- n and T increased, but fluctuation reduced
- Reduced power loads on divertor, narrowed width of power deposition on divertor
- D_{α} radiation reduced

ITER SD actively developed for L-H detection

	Diagnostic	Measurement	Time resolution	SD status
PFPO-1	55.F1 ECE	T _e	1 µs – 10 ms	ECRad
	55.EI X-ray Crystal Spectroscopy Edge	T _i , V _{pol}	10 – 100 ms	XICSRT+
	55.C5 TIP	line-averaged n_e	0.1 ms	DIP_TIP_POP
	55.E7 Radial X-ray Camera	$\sim n_e T_e$ ELM transients	down to 0.2 ms	ongoing
	55.E2 H-alpha + 55.E6 VSRS, 55.E4 DIM, 55.GE DFM	H_{α} intensity	20 µs	CASPER
	55.G7 Langmuir probes	divertor ion flux, n_e , T_e	20 µs – 2 ms	to be done
	55.EH VUV Edge	impurity influx in divertor	10 ms	to be done
	55.G6 Divertor IR thermography	surface T, power load	1 – 10 ms	ongoing
	55.D1 Bolometry	P _{rad}	10 ms	TOFU_bolo
PFPO-2	55.F9 HFS reflectometer	core n_e	5 – 24 µs	refractometer SD
	55.F2 LFS reflectometer	edge n_e , V_{pol}	5 – 24 µs	REFI
	55.EC CXRS Edge	edge T_i , V_{pol}	200 ms	CASPER
	55.C2 Edge TS	edge n _e , T _e	10 – 100 ms	ongoing
	A. Medvedev	ra – 4th IAEA TM on Fusion Data Processin	ng, Validation and Analysis	IDM UID: 6E99PA Pa

Synthetic diagnostics architecture within IMAS

Synthetic diagnostics architecture within IMAS

Development of CASPER workflow for spectrometry

CASPER ($H\alpha$)

Development of CASPER workflow for spectrometry

CASPER (Hα)

H_{α} SD is being integrated into CASPER

 For each field of view Ray Transfer Matrix (6D → 2D) can be calculated and stored to increase calculation speed

- For ITER RTM without (with) reflections :
 - 10 cm R,Z grid
 - 512×512 pixels camera
 - calculation 1 (4) CPUh
 - size 1 Gb (>10 Gb)
- Radiance calculation can be done at each SD call: 10 s on GPU, 30 min on CPU
- Results and RTM written in .npy format should be stored in MD IDSs to do

A. Medvedeva – 4th IAEA TM on Fusion Data Processing, Validation and Analysis

Example of H_{α} synthetic signals

CASPER (Hα)

- Emission in divertor is a few orders of magnitude higher than that in the main chamber SOL, which results in divertor stray light signal
- The initial drop of H_α radiance during the L-H transition might be recovered → further simulations

A. Medvedeva – 4th IAEA TM on Fusion Data Processing, Validation and Analysis

ECE design should remain flexible for PFPO

- ECRad synthetic diagnostic [S.S. Denk, CPC 2020] is adapted to IMAS and reads ITER Machine Description for radial and oblique ECE channels 123-353 GHz, O- and X-mode
- Ongoing work on its integration into the ITER SD workflow
- At present ECRad uses GUI + .nc output

 The radial resolution is determined by ECE frequency broadening effects, primarily relativistic, and plasma optical depth

A. Medvedeva – 4th IAEA TM on Fusion Data Processing, Validation and Analysis

ECE can provide a measurement of the pedestal top T_e

- X-mode ECE should be recommended to use in PFPO
- ECE cannot quite achieve the target resolution of 1 cm in pedestal region → ITER should also provide for a separate high resolution edge measurement system for PFPO-1 (TS, reflectometry available in PFPO-2)

Interferometer/polarimeter synthetic diagnostic for density

interferometer out = dip tip pop(equilibrium, core profiles, interferometer MD) Interferometer phase shift: DIP TIP POP $\Delta \phi = \frac{e^2 \lambda}{4\pi\epsilon_0 m_e c^2} \int n_e \left(1 - \frac{3}{2} \frac{T_e}{m_e c^2}\right) dl = 2.82 \cdot 10^{-15} \lambda \cdot \int n_e dl$ TIP Polarimeter Faraday angle: $\alpha = 5.24 \cdot 10^{-13} \lambda^2 \int \left(1 - \frac{2T_e}{m_e c^2}\right) n_e \vec{B} \cdot \vec{dl}$ POP Phase includes terms with electron temperature (A) and vibrational noise (B) and can be substracted by using a 2-colours system: $\Delta \phi = A\lambda + B/\lambda$ python DIP TIP POP.py -shot -run -diag -time for the 1st wavelength, degrees
 usual run and Minerva application • phase 500 $(+refractometer+magnetics+VSRS+H\alpha+XRCS)$ 400 **EasyVVUQ** branch for uncertainty quantification study 300 [Richardson et al. JOPS 2020] 200 **IDA** use (+ECE+TS) with new DIP_TIP_POP_triple.py:

init_static(interferometer) - MD init dynamic(equilibrium) - large time step evaluate(core profiles) — fine dynamics

A. Medvedeva – 4th IAEA TM on Fusion Data Processing, Validation and Analysis

TIP line average density recovering L-H transition

Conclusions and perspectives

- Assessment of the L-H transition detection is ongoing: interferometry, ECE and H_{α} radiation signals might provide enough information on the time evolution of the pedestal formation
- In order to fully detect an L-H transition, reflectometry and Thomson Scattering diagnostics might be necessary in addition to ECE in X-mode
- Synthetic diagnostics for the systems measuring plasma rotation, density/temperature in the edge and power load on the divertor are being actively developed
- The IMAS Machine Description database is populated with main diagnostics for the detection of L-H transition
- The IMAS Scenario Simulation database has a complete set of PFPO cases as foreseen in the ITER Research Plan
- Further development of ITER synthetic diagnostics together with Bayesian techniques will help to optimize the design of the measurement systems and to make performance predictions