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One model of the plasma
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Few common plasma model parameters inferred from heterogenous plasma diagnostic measurements

Charge exchange
recombination
spectroscopy

Visible

Thomson scattering X-ray imaging
spectrum spectrum
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Bayesian inference and modeling

« Model ‘m’of a plasma process can predict observations ‘d’ (data)
* Probability distributions p: uncertainties in model assumptions and

predictions
« Bayes rule:

p(m|d) =

posterior

« Joint distribution p(d, m): landscape of all possible assumptions and

predictions
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The Minerva Bayesian modeling framework [

 Minerva models are represented through graphical models

Minerva model of two different diagnostics at JET

Probabilistic
nodes: priors
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White nodes:
deterministic m =
nodes TN
os )| (‘e ) (mumsuostep
: Probabilistic
nodes: likelihood
(*) J. Svensson and A. Werner. Large' Scale Bayesian

Data Analysis for Nuclear Fusion Experiments. IEEE
International Symposium on Intelligent Signal Processing,
pages 1-6, 2007.
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Approximated Bayesian Inference ﬁm

* Inference on posterior probability:
 Markov Chain Monte Carlo (MCMC) sampling
* Maximum A Posteriori (MAP) for most likely value
* Linear methods: linear Gaussian inversion

 Non-linear methods provide robust, complete solutions
« But for complex forward model, calculations can be slow

» Tens of minutes to hours for one single data points (kHz to MHz sampling rates are common)
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Machine learning to approximate Bayesian inference

A Bayesian model is defined by its joint distribution: p(D, H)
* The network is trained on samples drawn from the joint: p(D, H) = p(D|H)p(H)

* |t can be trained to learn different mappings:

 And then used as a fast approximation when doing inference

* Inference time with deep learning models can be reduced to =100 us
« Fast estimation of plasma parameters for intershot analysis

« |nitial guess for conventional Bayesian inference algorithms
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» Forward function f: H—> D
* Inverse function f~1: D> H
 Mapping to the joint probability value g: (D, H) — p(D, H)
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Uncertainties in deep learning: whitening the ‘black box’ ﬁm

* |tis not luxury: more accurate and reliable models

* There is no perfect guess: uncertainties make DL more suitable for real world applications
 Bayesian neural network: p(w|D) w:trainable weights, D: training data

» Laplace approximation p(w|D)~N (u, o)

» Variational inference based approach KL(q(w|D)|p(w|D)) MC dropout (online estimation)
 Deep ensembles: accounting for local minima of optimization
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Convolutional neural network for Te and Ti profiles at W7-X

« Data: 2D X-ray imaging crystal spectrometer
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Edge electron density at the JET tokamak

JET plasma cross section

spectrometer

Measuring Li line intensity along 40 cm distance from
the top: n,, is inferred at these edge positions
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Conclusions

» Bayesian modeling of multiple plasma diagnostics

* Model based machine learning training: samples from the joint probability distribution
« Computationally sustainable and scalable inference (=100 ps)

DL uncertainties computable also in real time

 Real time applications possible
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« NN based fast approximate inference immediately generalized for any integrated model

* Acceleration of posterior sampling (MCMC/DL-based variational inference)

* Physics constraints into ML model training
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