
A. Pavone

Scalable Bayesian inference with model 
based machine learning

01.12.2021  A. Pavone et al. 1



Content

1. Bayesian inference in fusion experiments

2. The Minerva framework: unifying Bayesian modeling and inference

3. Machine learning based approximations of Bayesian inference

4. Proofs of concept

01.12.2021  A. Pavone et al. 2



One model of the plasma
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Few common plasma model parameters inferred from heterogenous plasma diagnostic measurements



• Model ‘m’ of a plasma process can predict observations ‘d’ (data)

• Probability distributions p: uncertainties in model assumptions and 

predictions

• Bayes rule:

𝑝 𝑚 𝑑 =
𝑝 𝑑 𝑚 𝑝 𝑚

𝑝 𝑑
=
𝑝(𝑑,𝑚)

𝑝(𝑑)
∝ 𝑝(𝑑,𝑚)

• Joint distribution 𝑝(𝑑,𝑚): landscape of all possible assumptions and 

predictions

Bayesian inference and modeling 

likelihood prior joint distribution
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The Minerva Bayesian modeling framework 
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• Minerva* models are represented through graphical models
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Minerva model of two different diagnostics at JET

(*)



Approximated Bayesian Inference
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• Inference on posterior probability:
• Markov Chain Monte Carlo (MCMC) sampling

• Maximum A Posteriori (MAP) for most likely value

• Linear methods: linear Gaussian inversion

• Non-linear methods provide robust, complete solutions

• But for complex forward model, calculations can be slow

• Tens of minutes to hours for one single data points (kHz to MHz sampling rates are common)



Machine learning to approximate Bayesian inference
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• A Bayesian model is defined by its joint distribution: 𝑝(𝐷,𝐻)

• The network is trained on samples drawn from the joint: 𝑝 𝐷,𝐻 = 𝑝 𝐷 𝐻 𝑝(𝐻)

• It can be trained to learn different mappings:
• Forward function 𝑓: 𝐻 → 𝐷

• Inverse function 𝑓−1: 𝐷 → 𝐻

• Mapping to the joint probability value 𝑔: 𝐷,𝐻 → 𝑝(𝐷, 𝐻)

• And then used as a fast approximation when doing inference

• Inference time with deep learning models can be reduced to ≈100 μs

• Fast estimation of plasma parameters for intershot analysis

• Initial guess for conventional Bayesian inference algorithms



Uncertainties in deep learning: whitening the ‘black box’
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• It is not luxury: more accurate and reliable models

• There is no perfect guess: uncertainties make DL more suitable for real world applications

• Bayesian neural network: 𝑝(𝑤|𝐷) 𝑤: trainable weights, 𝐷: training data

• Laplace approximation 𝑝(𝑤|𝐷)~𝑁(𝜇, 𝜎)

• Variational inference based approach 𝐾𝐿(𝑞 𝑤|𝐷 |𝑝(𝑤|𝐷)) MC dropout (online estimation)

• Deep ensembles: accounting for local minima of optimization



Convolutional neural network for Te and Ti profiles at W7-X
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• Data: 2D X-ray imaging crystal spectrometer



Edge electron density at the JET tokamak

plasma

Li beam

plasma

JET plasma cross section

Measuring Li line intensity along 40 cm distance from 

the top: 𝑛𝑒 is inferred at these edge positions
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Conclusions

• Bayesian modeling of multiple plasma diagnostics

• Model based machine learning training: samples from the joint probability distribution

• Computationally sustainable and scalable inference (≈100 μs)

• DL uncertainties computable also in real time

• Real time applications possible

• NN based fast approximate inference immediately generalized for any integrated model

• Acceleration of posterior sampling (MCMC/DL-based variational inference)

• Physics constraints into ML model training
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