An advanced plasma current tomography based on Bayesian inference and neural networks

Reporter: Zijie Liu1,2,3
Tutors: Jiangang Li1,3, Bingjia Xiao1,3
Collaborator: Tianbo Wang2, Zhengpin Luo3

1 University of Science and Technology of China, Hefei 230026, China
2 Southwestern Institute for Physics, CNNC, Chengdu 610200, China
3 Institute of Plasma Physics, Chinese Academy of Science, PO Box 1126, Hefei 230031, China
PART 01 Background
PART 02 Plasma current tomography
PART 03 Integrated data analysis
PART 04 Summary
PART 01

Background
Advantages:

- The Bayesian inference takes the prior information $p(I)$, the likelihood probability $p(D_{Mag}|I)$ into consideration to give the current distribution in a probabilistic manner.
- The error is visually represented by a given uncertainty
- Other diagnostics were easily integrated by joint probabilities

Previous works:

plasma current tomography based on CAR(conditional autoregressive) prior\(^1\)

- The model was severely affected by the diagnostics (damaged)
- The current at the core is always underestimated

\(^1\) Z. J. Liu and et al. Plasma current profile reconstruction for east based on Bayesian inference. Fusion Engineering and Design
PART 02

Plasma current tomography
Plasma current tomography

Assume: The fitting error satisfies with the Gaussian distribution

\[p(B|A) = p(B) \frac{p(A|B)}{p(A)} \propto p(B) \cdot p(A|B) \]

\[p(I|D^{Mag}) \propto p(I) \cdot p(D^{Mag}|I) \]

Likelihood \(p(D^{Mag}|I) \)

Biot-Savart Law: \(\vec{B} = \int \vec{dB} = I \oint \frac{\mu_0}{4\pi} \frac{d\vec{l} \times \vec{r}}{r^3} = GI \)

\(D^{Mag} = GI + C \)

The contribution of the PF coil current to the diagnostic signal

Covariance matrix, determined by the diagnostics

\[p(D^{Mag}|I) = \frac{1}{(2\pi)^{N^2/2}|\Sigma_D|^{1/2}} \exp \left(-\frac{1}{2} \left(\vec{G}I + \vec{C} - D^{Mag} \right)^T \Sigma_D^{-1} \left(\vec{G}I + \vec{C} - D^{Mag} \right) \right) \]

Magnetic diagnostics on EAST
- Pickup coils: 38 (red dot)
- Magnetic flux loops: 35 (blue asterisk)
- Rogowski loop: 1

The yellow grids contain the plasma
Construcr σ as a proportional function of current (The current is from reference discharge)

If \(i = j \) \quad $\sigma = k \cdot \bar{I}_i$

Else $\sigma = k \cdot \sqrt{\bar{I}_i \cdot \bar{I}_j}$

Where k is a constant

$$p(\bar{I}) = \frac{1}{(2\pi)^{N/2} |\Sigma_I|^{1/2}} \exp\left(-\frac{1}{2} \bar{I}^T \Sigma_I^{-1} \bar{I}\right)$$
\(p(\overline{I}|\overline{D^{Mag}}) \)

- Prior probability:
 \[
p(\overline{I}) = \frac{1}{(2\pi)^{N_I/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\overline{I})^T \Sigma^{-1} (\overline{I}) \right]
 \]

- Likelihood probability:
 \[
p\left(\overline{D^{Mag}}|\overline{I}\right) = \frac{1}{(2\pi)^{N_D/2} |\Sigma_D|^{1/2}} \exp\left[-\frac{1}{2} (\overline{G}\overline{I} + \overline{C} - \overline{D^{Mag}})^T \Sigma_D^{-1} (\overline{G}\overline{I} + \overline{C} - \overline{D^{Mag}}) \right]
 \]

Posterior probability:
\[
p\left(\overline{I}|\overline{D^{Mag}}\right) = \frac{1}{(2\pi)^{N_I/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\overline{I} - \overline{m})^T \Sigma^{-1} (\overline{I} - \overline{m}) \right]
\]

Covariance matrix:
\[
\overline{\Sigma} = (\overline{G}^T \Sigma_D^{-1} \overline{G} + \overline{\Sigma}_I^{-1})^{-1}
\]

Mean:
\[
\overline{m} = (\overline{G}^T \Sigma_D^{-1} \overline{G} + \Sigma_I^{-1})^{-1} \Sigma_D^{-1} (\overline{D^{Mag}} - \overline{C} - \overline{G}\overline{m}_I)
\]
Result from simulation

Relative error:
\[\xi_i = \frac{|I_{i}^{\text{rec}} - \bar{I}_i|}{\max(\bar{I})} \]

Root-mean-square deviation:
\[\text{RMSD} = \sqrt{\frac{\sum_{i=1}^{n}(I_{i}^{\text{rec}} - \bar{I}_i)^2}{n}} \]
Robustness

Add 3% noise

Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>USN</th>
<th>LSN</th>
<th>DN</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 (cm)</td>
<td>0.0545</td>
<td>0.0476</td>
<td>0.0850</td>
</tr>
<tr>
<td>C2 (cm)</td>
<td>0.0953</td>
<td>0.0093</td>
<td>0.0372</td>
</tr>
<tr>
<td>C3 (cm)</td>
<td>0.1100</td>
<td>0.0474</td>
<td>0.1600</td>
</tr>
<tr>
<td>C4 (cm)</td>
<td>0.0107</td>
<td>0.0652</td>
<td>0.0820</td>
</tr>
<tr>
<td>C5 (cm)</td>
<td>0.0535</td>
<td>0.0305</td>
<td>0.0539</td>
</tr>
<tr>
<td>C6 (cm)</td>
<td>0.0161</td>
<td>0.0589</td>
<td>0.0561</td>
</tr>
<tr>
<td>X_{U}(cm)</td>
<td>0.0668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_{L}(cm)</td>
<td></td>
<td>0.0289</td>
<td>0.1580</td>
</tr>
<tr>
<td>Max Error(cm)</td>
<td>0.4800</td>
<td>0.1700</td>
<td>0.7800</td>
</tr>
<tr>
<td>Max (\xi) Current (%)</td>
<td>5.47%</td>
<td>3.34%</td>
<td>5.95%</td>
</tr>
<tr>
<td>RSMD Current (A)</td>
<td>2.2524</td>
<td>1.1884</td>
<td>1.7880</td>
</tr>
<tr>
<td>Max (\xi) Flux (%)</td>
<td>1.30%</td>
<td>0.97%</td>
<td>0.86%</td>
</tr>
<tr>
<td>RSMD Flux (Wb)</td>
<td>0.0021</td>
<td>0.0017</td>
<td>0.0018</td>
</tr>
</tbody>
</table>
The different current distributions were obtained by changing the q.

Select $q = 2$ as reference discharge and reconstruct plasma current at $q = 1.5$, 2.5 and 3.
Different devices HL-2A

RETINA, schematic diagram of the integrated data analysis platform on HL-2A
Neural network gives the reference discharge

Train Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Datasize</th>
<th>No.of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{PF}</td>
<td>PF current (Rogowski loops)</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>I_{P0}</td>
<td>total plasma current (Rogowski loop)</td>
<td>1</td>
<td>276689</td>
</tr>
<tr>
<td>Ψ_{FL}</td>
<td>Poloidal magnetic flux (flux loops)</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>The current in different position</td>
<td>506</td>
<td></td>
</tr>
</tbody>
</table>

Activation function

$Selu = \lambda \begin{cases}
 x & \text{if } x > 0 \\
 \alpha e^x - \alpha & \text{if } x \leq 0
\end{cases}$

$Relu = \max(0, x)$

Loss function (MSE)

$Loss = \frac{1}{N} \sum_{i=1}^{N} (I_i - I^{\text{Target}}_i)^2$
Experiment result from different reference discharge

Red line is the boundary from EFIT, Write Line is from the Bayesian model.
PART 03

Integrated data analysis
Diagnostic principle

POINT

\[\text{Point}_1 = \psi = \frac{\phi_R - \phi_L}{2} = 2.62 \times 10^{-13} \lambda^2 \int n_e B_{//} dl \]

\[\text{Point}_2 = \phi = \frac{\phi_R + \phi_L}{2} = 2.82 \times 10^{-15} \lambda \int n_e \, dl \]

HCN

\[HCN = \frac{\pi}{\lambda n_c} \int n_e(z) \, dz \]

Forward model

Inverse model

<table>
<thead>
<tr>
<th>I_{plasma}</th>
<th>HCN interferometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_e</td>
<td>Polariometry interferometer</td>
</tr>
<tr>
<td></td>
<td>Pickup coils, flux loops, Rogowski loops</td>
</tr>
</tbody>
</table>

Bayesian Model

\[I_{plasma} \]

\[n_e \]
The isoelectron density surface and the isomagnetic surface are on the same surface, and the magnetic flux is related to the current.
Likelihood---Forward model

\[
P_{\text{point}} = 2.62 \times 10^{-13} \lambda^2 \int n_e B_{\parallel} dl \approx 2.62 \times 10^{-13} \lambda^2 \sum n_e \cdot (\bar{R}_1 \bar{I} + \bar{R}_2 \bar{I}_{pf}) \cdot \Delta l = \bar{R}_{\text{point}2} \text{diag}(\bar{n}_e) \bar{I} + \bar{C}_1
\]

\[
p(\bar{d}_{\text{point}1} | \bar{I}) = \frac{1}{(2\pi)^{\frac{m}{2}} |\bar{\Sigma}_{\text{point1}}|^\frac{1}{2}} \exp\left[-\frac{1}{2} (\bar{R}_{\text{point1}} \text{diag}(\bar{n}_e) \bar{I} + \bar{C}_1 - \bar{d}_{\text{point1}})^T \bar{\Sigma}_{\text{point1}}^{-1} (\bar{R}_{\text{point1}} \text{diag}(\bar{n}_e) \bar{I} + \bar{C}_1 - \bar{d}_{\text{point1}})\right]
\]

\[
P_{\text{point}} = 2.82 \times 10^{-15} \lambda \int n_e dl \approx 2.82 \times 10^{-15} \lambda \sum n_e \cdot \Delta l = \bar{R}_{\text{point}2} \bar{n}_e
\]

\[
p(\bar{d}_{\text{point}2} | \bar{n}_e) = \frac{1}{(2\pi)^{\frac{m}{2}} |\bar{\Sigma}_{\text{point2}}|^\frac{1}{2}} \exp\left[-\frac{1}{2} (\bar{R}_{\text{point2}} \cdot \bar{n}_e - \bar{d}_{\text{point2}})^T \bar{\Sigma}_{\text{point2}}^{-1} (\bar{R}_{\text{point2}} \cdot \bar{n}_e - \bar{d}_{\text{point2}})\right]
\]

\[HCN = \frac{\pi}{\lambda n_c} \int n_e(z) dz = \bar{R}_{\text{HCN}} \cdot \bar{n}_e
\]

\[
p(\bar{d}_{\text{HCN}} | \bar{n}_e) = \frac{1}{(2\pi)^{\frac{m}{2}} |\bar{\Sigma}_{\text{HCN}}|^\frac{1}{2}} \exp\left[-\frac{1}{2} (\bar{R}_{\text{HCN}} \cdot \bar{n}_e - \bar{d}_{\text{HCN}})^T \bar{\Sigma}_{\text{HCN}}^{-1} (\bar{R}_{\text{HCN}} \cdot \bar{n}_e - \bar{d}_{\text{HCN}})\right]
\]
Prior

SE kernel function

\[
k_{SE}(\bar{x}, \bar{x}') = \sigma^2 \exp(-\frac{(\bar{x}-\bar{x}')^2}{2\ell^2})
\]

\[
\Sigma = \begin{pmatrix}
K(\bar{x}_1, \bar{x}_1) & \cdots & K(\bar{x}_1, \bar{x}_n) \\
\vdots & \ddots & \vdots \\
K(\bar{x}_n, \bar{x}_1) & \cdots & K(\bar{x}_n, \bar{x}_n)
\end{pmatrix}
\]

\[
P(\bar{I})
\]

Construct \(\sigma\) as a proportional function of current

- If \(i = j\), \(\sigma = k \cdot \bar{I}_i\)
- Else, \(\sigma = k \cdot \sqrt{\bar{I}_i \cdot \bar{I}_j}\)

\[
k_{SE}(\bar{x}, \bar{x}') = (k \cdot \sqrt{\bar{I}_i \cdot \bar{I}_j})^2 \exp(-\frac{(\bar{x}-\bar{x}')^2}{2\ell^2})
\]

\[
p(\bar{n}_e \mid \bar{I})
\]

Convert Cartesian coordinates \(\bar{x}, \bar{x}'\) to magnetic coordinates \(\bar{\psi}, \bar{\psi}'\)

\[
\bar{\psi} = \bar{R}_1 \bar{I} + \bar{R}_2 \bar{I}_{pf}
\]

\[
k_{SE}(\bar{\psi}, \bar{\psi}') = \sigma^2 \exp(-\frac{(\bar{\psi}-\bar{\psi}')^2}{2\ell^2})
\]

\[
p(\bar{n}_e \mid \bar{I}) = \frac{1}{(2\pi)^{N_{ne}/2} |\Sigma_{ne}|^{-1/2}} \exp(-\frac{1}{2} \bar{n}_e^T \Sigma_{ne}^{-1} \bar{n}_e)
\]

\[
P(\bar{I}) = \frac{1}{(2\pi)^{N_{I}/2} |\Sigma_{I}|^{-1/2}} \exp(-\frac{1}{2} \bar{I}^T \Sigma_{I}^{-1} \bar{I})
\]
Result from simulation
PART 04

Summary
Summary

➢ ASE Bayesian probability model performs well on reconstructing the plasma current
➢ For ASE Bayesian probability models, Bayesian probability have strong robustness, which can also achieve accurate plasma equilibrium reconstruction when there is a large difference between the reference discharge and the true discharge, and also be migrated to different devices.
➢ Neural network can automatically provide the appropriate reference discharge for our model

Next steps

◆ The simulation of the integrated analysis will be further improved
◆ The model will be tested using the experimental data
◆ Integrate more diagnostics, and build a large integrated analysis platform
Thanks for your attention!

University Of Science And Technology Of China

Email: zijie.liu@ipp.ac.cn