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Motivation

• Determining the root cause of a disruption can be a difficult and time 
consuming task
• If the root cause is not very clear, in depth visual data analysis is required 

to look for specific signal patterns

• Can we characterise the ‘termination phase’ of disruptive discharges 
by the evolution of signal patterns?
• This would allow the automatic classification of disruption types

• Machine learning methods by means of unsupervised classification 
techniques can contribute significantly
• The objective is to discuss two different approaches based on two different 

mathematical foundations that provide coherent results
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Even today, in fusion, most databases are built manually, which can have 
various drawbacks (manpower, human errors, …)



Motivation
Final goal: label evolution in the last part 
of disruptive discharges

• Finding consecutive temporal segments 
that show different behaviours close to 
the disruption

• The concept of ‘temporal segment’ is the 
key in this respect

• How are the segments defined?
• How do the segments differ between them?

• After segment labelling, it is possible to 
find common sequences at the end of the 
discharges

• Labels are assigned by means of an 
unsupervised clustering

• Are the several sequences of labels 
intrinsically related to the physics root 
cause of the disruption?
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Overview

• Conceptual view of the method

• Two different approaches to the implementation

• Results

• Conclusions
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Steps

• Segment definition (discharge by discharge) in a 
multidimensional parameter space

• Recognition of temporal segments related to disruptions

• Unsupervised classification of patterns with the dataset 
of discharges and segment fusion

• Grouping of similar temporal sequences to identify 
different plasma behaviours leading to disruptions
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Parameter space
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Plasma Current

ModeLock

Plasma Internal Inductance

Plasma Density

Poloidal Beta

Total Input Power

Plasma Vertical Position

Radiated Power

Stored diamagnetic energy derivative

Bolometry signal for Core plasma lower section

Bolometry signal for Core plasma upper section

Bolometry signal for lower section

Bolometry signal for upper section

Vertical Soft X-Ray Core plasma measurement signal

Vertical Soft X-Ray High Field Side measurement signal (1/2)

Vertical Soft X-Ray High Field Side measurement signal (2/2)

Vertical Soft X-Ray Low Field Side measurement signal (1/2)

Vertical Soft X-Ray Low Field Side measurement signal (2/2)

High Field Side Line Integrated Density Signal

Core Plasma Line Integrated Density Signal (1/2)

Core Plasma Line Integrated Density Signal (2/2)

Low Field Side Line Integrated Density Signal

• Signals typically related to disruption 
prediction

• Are these 22 signals enough?
• This is part of the analysis

•
• Combination of parameters in lower 

dimensional spaces have to be tested

• Off-line analysis

• The data flow of feature vectors is 
analysed from plasma start to 
extinction
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Step 1: segment definition (discharge by discharge)

• How to define segments?

• The available information is a continuous data flow that provides the 
temporal evolution of feature vectors in multi-dimensional spaces
• Machine learning methods can be used to extract knowledge from this 

temporal evolution

• Mathematical foundation
• The main assumption in learning from data is that the examples are drawn 

independently from a fixed but unknown probability distribution function (PDF)
• In any system that generates a continuous data flow (data streaming setting), 

the PDF may change as the data are streaming
• The new PDF is also unknown

• Such changes in the data may convey interesting time-dependent information 
and knowledge and, in general, the changes can be seen as anomalies in the 
system evolution

• These anomalies define the time limits of the segments
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Step 1: segment definition (discharge by discharge)
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Step 2: Recognition of temporal segments related to disruptions
• A first filter is applied to only retain those segments that, according to the data evolution, are related to a disruptive behaviour

• The other changes in the PDF (the other anomalies) are not related to disruptions
• Each segment is represented by a single pattern to summarise the plasma physics behaviour along the segment

• Different segments with different temporal length are present in different discharges
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Step 3: Unsupervised classification of 
patterns with the dataset of discharges

• The plasma physics behaviour synthetized in the first (second, …) disruptive 
segment of one discharge is not necessarily related to the plasma physics behaviour 
summarised in the first (second, …) disruptive segment of other discharges

• It is necessary to group the temporal segments that show a similar disruptive behaviour

• An unsupervised classification allows associating a label to each segment to 
recognise similar physics behaviours

• The unsupervised classification process is carried out with all disruptive segments of all 
discharges contained in the dataset of discharges that is analysed
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Step 3: Unsupervised classification of 
patterns with the dataset of discharges
• Each physics behaviour (each segment) is represented by a label after the 

unsupervised classification process implemented with all segments of all 
discharges in the dataset

• Due to the fact that the classifier is unsupervised, the specific physics behaviour 
of each label is not identified by the classification process

• The search for relationships between labels and physics is an additional step to be carried 
out by experts

• Segment fusion: sequence of labels
• 95992: EEEEE  E
• 96384: DDB  DB
• 96745: CCEA  CEA
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Step 4: Grouping of similar temporal sequences to identify 
different behaviours leading to disruptions

• This step in intended for the automatic 
classification of the temporal sequences 
into a number of clusters

• The temporal sequences representing the 
end of disruptive discharges could have a 
large number of symbols (labels) and 
discharges with the same behaviour could 
have similar temporal sequences but not 
identical
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Approaches

• Unsupervised classification of patterns with the dataset of discharges and segment fusion
• Determination of the optimal number of clusters by means of hierarchical clustering and the S_DbW validity index1

• Segment fusion
• Each discharge is represented by a string of labels

• Grouping of similar temporal sequences to identify different behaviours leading to 
disruptions

• Unsupervised clustering with the above string of labels is performed
• Variable number of symbols per string
• The strings represent sequential data

• To perform agglomerative cluster from linkages, the distance between strings is computed by means of the S3M 
similarity function2

• Determination of the optimal number of clusters by means of the Silhouette validity index3
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• Segment definition (discharge by discharge)
• Anomaly detections by exchangeability martingales

• Recognition of temporal segments related to 
disruptions

• Outlier detection (see later)

• Segment definition (discharge by discharge)
• By dividing the discharges in time windows and applying a sliding 

window mechanism, changes in the data PDF are detected by 
means of unsupervised clustering

• Recognition of temporal segments related to disruptions
• First segment after the longest one (see later)

1M. Halkidi et al. Proc. of IEEE international conference on data mining, ICDM 2001 (pp. 187–194). http://doi.org/10.1109/ICDM. 2001.989517
2P. Kumar et al.  International Journal of Data Warehousing and Mining, 6 (4) (2010), 16–32
3P. J. Rousseeuw. Journal of Computational and Applied Mathematics, 20 (1987) 53–65 http://doi.org/10.1016/0377-0427(87)90125-7

http://doi.org/10.1109/ICDM.%202001.989517
http://doi.org/10.1016/0377-0427(87)90125-7
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Detection of anomalies: test of exchangeability1

• The examples                 arrive one by one and a valid measure of 
the degree to which the assumption of exchangeability has been 
falsified is obtained
• Such measures are provided by exchangeability martingales
• A martingale is a sequence of random variables that remains stable in 

value with some fluctuation as long as the process is random, i.e. 
without external inference

• The Randomised Power Martingale is used

• An anomaly is detected when 
• 1/λ determines the false alarm rate that one is willing to accept

1S. Ho et al. IEEE Transactions on Pattern Analysis and Machine Intelligence. 32, 12 (2010) 2113-2127
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Detection of anomalies: test of exchangeability
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• Parameters to optimise: ε and λ
• Optimization of ε and selection of disruptive segments

• Each discharge is analysed with                          and 
• Each temporal segment of a shot (for each epsilon) is represented by the mean 

value of the distances between the feature vectors of the segment
• The winner epsilon will be the one with the greatest number of outlier segments 

close to the disruption
• If several epsilons have the same number of outlier segments, the winner is the one with 

the higher increasing rate of the martingale

Outliers: values that are 
more than three scaled 
median absolute deviations 
away from the median

0.9 0.99ε≤ ≤ 100λ =
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Detection of anomalies: unsupervised detection method1

For each Disruptive 
discharge

Dividing the discharge in 
temporal windows

(sliding window mechanism)

Feature vectors in 
each window

(Two autoregressive coefficients)

𝑊𝑊 𝑚𝑚 = �
𝑖𝑖=1

2

)𝑎𝑎𝑖𝑖𝑊𝑊 𝑚𝑚 − 𝑖𝑖 + 𝑒𝑒(𝑚𝑚

Optimal unsupervised
process by Hierarchical

Clustering algorithm

- Cophenetic
Correlation
Coefficient2

- S_Dbw
Validity Index

Event detection: consecutive segments of different types define anomalies

Optimization of window size

Optimization of slide width

Optimization of number of
clusters to classify the

temporal windows

1A. Mur et al. Expert System with
Applications, vol. 54, pp. 294-303,
2016

Computational optimization time
for each discharge around 3 hours

2R. Sokal et al.
Taxon, 11 (2) (1962) 33–40
http://doi.org/10.2307/1217208

http://doi.org/10.2307/1217208


Detection of anomalies: unsupervised detection method

• Window size
• Slide width
• Number of clusters to classify the temporal windows
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Results
• JET disruptive discharges in the range 94422 - 96996

• Unintentional disruptions
• 52 discharges corresponding to the baseline scenario

• With the 2 approaches that have been described, the ending part of disruptive discharges 
are grouped into 3 clusters

• Alarms fired by the JET control system
• Cluster 1: high radiation emission
• Cluster 2: MHD and locked mode
• Cluster 3: mix of causes

• 79% of disruptions are classified in the same cluster by both approaches
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Cluster 1 Cluster 2 Cluster 3

Cluster 1 33 1 1 35

Cluster 2 2 7 0 9

Cluster 3 6 1 1 8

41 9 2

Anomaly detections by  
exchangeability martingales

Anomaly detections with temporal 
windows and unsupervised clustering 



Conclusions
• First results show that the detection of changes in the data 

PDF (multi-dimensional spaces) are useful to recognise 
several plasma behaviours
• Both the initial PDF and the final PDF are unknown

• In particular, disruptive segments can be identified by 
recognising changes in the PDFs of data streams

• The disruptive part of discharges can be represented by 
strings of labels that represent the temporal evolution of the 
shots

• The string of labels can be grouped together to identify similar 
behaviours in the disruptive phase of the shots

• Tests with JET unintentional disruptions and two different 
methods show promising results
• 79% of disruptions are grouped in the same clusters with the two 

methods
• A lot of additional work remains
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Work in progress

• Parameter optimization
• Selection of physics quantities and proper representations
• Martingale parameters
• Window width, sliding window mechanism

• Unsupervised clustering techniques
• Hidden Markov Models, spectral clustering

• Application to other plasma scenarios
• Hybrid scenario

• Physics interpretation of segments and label sequences
• Relation with the root causes of disruptions
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Thank you very much for your attention!

Questions?
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