Fast integrated modelling using a neural network surrogate model for turbulent transport

Karel van de Plassche^{1,2}

J. Citrin¹, F. J. Casson³, F. Felici⁴, A. Ho², F. Koechl³, S. Van Mulders⁴, O. Sauter⁴, and JET Contributors^{*}

¹ DIFFER, PO Box 6336, 5600 HH Eindhoven, The Netherlands ² Eindhoven University of Technology, Eindhoven, The Netherlands ³ CCFE, Culham Science Centre, OX14 3DB, Abingdon, UK ⁴ EPFL-SPC, CH-1015 Lausanne, Switzerland

* See the author list of 'Overview of JET results for optimising ITER operation' by J. Mailloux et al.to be published in Nuclear Fusion Special issue: Overview and Summary Papers

from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021)

November 30th, 2021

Section A

Surrogates in integrated modelling (introducing QLKNN)

1 Surrogates in integrated modelling (introducing QLKNN)

2 Application of PoP QLKNN to ITER cases

3 Extensions to QLKNN model

Integrated modelling primer

QuaLiKiz: fast and accurate reduced turbulence model

- Reduced quasi-linear gyrokinetic code
- Multiple examples of agreement with experiments^{1,2,3,4,5}
- 6 orders of magnitude faster than nonlinear calculations
 - Still in agreement with nonlinear flux due to saturation rule^{6,7}
- 10 CPU seconds to calculate turbulent fluxes at a single radial position
- QuaLiKiz⁸ + JINTRAC: *O*(24) *hrs* per second of JET

Open source: see http://qualikiz.com for more information

²S. Breton NF 2018

³O. Linder NF 2019

⁴A. Ho NF 2019

⁵F. Casson NF 2020

⁶A. Casati NF 2009

⁷J. Citrin PoP 2012

⁸C. Stephens IPP 2021

¹C. Bourdelle PPCF 2016

Faster modelling by replacing QuaLiKiz ...

Local dimensionless plasma parameters

... by fast Neural Network

Local dimensionless plasma parameters

Dataset of 300 million QuaLiKiz points has been generated

Dataset spans wide core-relevant regime, and is freely available on Zenodo: doi.org/10.5281/zenodo.3497065, online visualization:

variable	# points	min	max
$k_{ heta} ho_{s} \leq 2$	10	0.1	2
$k_{ heta} ho_{s}>2$	8	3.5	36
R/L_{T_e}	12	0	14
R/L_{T_i}	12	0	14
R/L_n	12	-5	6
q	10	0.66	15
Ŝ	10	-1	5
r/R	8	0.03	0.33
T_i/T_e	7	0.25	2.5
$ u^*$	6	$1 imes 10^{-5}$	1
Z _{eff}	5	1	3
Total flux calculations	3×10^{8}	$\sim 1.3 MCPUb$	

0

Benchmark: good match between QLKNN and QuaLiKiz

Simplified physics case

Based on high performance baseline JET 92436 [A. Ho et al. NF 2019]

No full QuaLiKiz surrogate, but most important features are captured

Full physics case, based on high performance hybrid JET 92398 [Casson IAEA 2018] Parameters not yet included in this QLKNN (e.g. α , $R/L_{n_{i,imp}}$) can play a role; still good match!

Essential: Capture physics in the surrogate model

Same threshold for all transport channels $(q_{i,e}, \Gamma_e)$ essential

- Global regression measures less important than local features
- Global RMS error weak indicator of surrogate model quality

Essential for integrated modelling: Include this in surrogate model.

Example of matching ITG temperature gradient critical thresholds using customised cost function and network structure (left)

9/25

Physics-unaware: Less quality for the same rms!

Full physics case, based on high performance hybrid JET 92398 [Casson IAEA 2018] NO special cost function, NO special train targets, *same RMS of fit!*

JINTRAC-QLKNN-hyper-10D vs a network trained on the full fluxes at t=22.75s [K.L. van de Plassche et al. PoP 2020] K.L. van de Plassche | QuaLikiz Neural Network November 30th, 2021

Section B

Application of PoP QLKNN to ITER cases

1 Surrogates in integrated modelling (introducing QLKNN)

2 Application of PoP QLKNN to ITER cases

3 Extensions to QLKNN model

4 Wrap-up

New regime: ITER baseline core modelling

Very encouraging results, QLKNN performs similarly as for JET simulations in PoP2020 Based on [F. Koechl *et al.* IAEA 2018, P. Mantica *et al.* PPCF 2020], pedestal constrained by EPED.

New regime: ITER hybrid

Reference run for WIP optimization exercise. α rule important for hybrid scenario due to large \hat{s} and large α . Based on [J. Citrin *et al.* NF 2010]. Final version in [S. Van Mulders *et al.* NF 2021]

Section C

Extensions to QLKNN model

1 Surrogates in integrated modelling (introducing QLKNN)

- **2** Application of PoP QLKNN to ITER cases
- 3 Extensions to QLKNN model

Include physics in network structure: QLKNN-hyper

General unconstrained 'combined NN' K.L. van de Plassche | QuaLiKiz Neural Network November 30th 2021 For ITG general input \mathbf{x}_g and special input x_s

$$\mathbf{x}_g \in \{R/L_{T_e}, R/L_n, q, ..., Z_{eff}\}$$

 $x_s \in \{R/L_{T_i}\}$

 $\begin{aligned} & \mathsf{QLKNN-hyper} \\ & q_e(\mathbf{x}_g, x_s) = \mathsf{NN}_{q_e/q_i}(\mathbf{x}_g, x_s) * \mathsf{NN}_{q_i}(\mathbf{x}_g, x_s) \\ & q_i(\mathbf{x}_g, x_s) = \mathsf{NN}_{q_i}(\mathbf{x}_g, x_s) \\ & \Gamma_e(\mathbf{x}_g, x_s) = \mathsf{NN}_{\Gamma_e/q_i}(\mathbf{x}_g, x_s) * \mathsf{NN}_{q_i}(\mathbf{x}_g, x_s) \end{aligned}$

QLKNN family: Include relevant physics in different ways

- We want to approximate the full QuaLiKiz model including isotopes, impurities
 - Challenge: Needs larger dataset, make sure QuaLiKiz is okay
 - Solution: Extend dataset \Rightarrow QLKNN-hyper-11D
- We want to extend incorporation of known physics constraints
 - Solution: Include physics in network architecture itself: QLKNN-HornNet (P. Horn et al., in preparation)
 - Solves challenge: Combing QLKNN-hyper nets compounds errors
 - Solves challenge: QLKNN-hyper training strategy allows for non-physical freedom.
- We want to approximate the full QuaLiKiz model
 - Challenge: Hypercube dataset scales poorly with input dimensionality, multiple TCPUhl.
 - Solution: Base on experimental data => QLKNN-jetexp, on A. Ho et al. PoP 2021
 - New challenge: Need large database of profiles of different machines

QLKNN-hyper-11D: Extend to isotopes and impurities

	variable	# points	min	max
• Extend dataset with	$k_{ heta} ho_{s}\leq 2$	10	0.1	2
	$k_{ heta} ho_{ m s}>2$	8	3.5	36
impurity density	R/L_{T_e}	11	0	14
gradients	R/L_{T_i}	11	0	14
 Includes updates to 	R/L_{n_e}	11	-5	5
physics and numerics,	$R/L_{n_{i,0}}$	12	-15	15
see QuaLiKiz-2.8.0 ¹	q	9	0.66	10
 Data generated, NN 	ŝ	9	-1	4
training pipeline	r/R	8	0.1	0.9
preparation ongoing.	T_i/T_e	7	0.25	2.5
2TiB of compressed	$ u^*$	5	0	0.1
netCDF before filtering!	n _i /n _e	4	0	0.3
_	Total flux calculations	2×10^{9}	$\approx 8 MCPUh$	

¹But not the most recent QLK version https://gitlab.com/qualikiz-group/QuaLiKiz/-/tags/2.8.2

QLKNN family: Include relevant physics in different ways

- We want to approximate the full QuaLiKiz model including isotopes, impurities
 - Challenge: Needs larger dataset, make sure QuaLiKiz is okay
 - Solution: Extend dataset \Rightarrow QLKNN-hyper-11D
- We want to extend incorporation of known physics constraints
 - Solution: Include physics in network architecture itself: *QLKNN-HornNet* (P. Horn *et al.,* in preparation)
 - Solves challenge: Combing QLKNN-hyper nets compounds errors
 - Solves challenge: QLKNN-hyper training strategy allows for non-physical freedom
- We want to approximate the full QuaLiKiz model
 - Challenge: Hypercube dataset scales poorly with input dimensionality, multiple TCPUhl.
 - Solution: Base on experimental data ⇒ *QLKNN-jetexp*, on A. Ho *et al*. PoP 2021
 - New challenge: Need large database of profiles of different machines

QLKNN family: Include relevant physics in different ways

- We want to approximate the full QuaLiKiz model including isotopes, impurities
 - Challenge: Needs larger dataset, make sure QuaLiKiz is okay
 - Solution: Extend dataset \Rightarrow QLKNN-hyper-11D
- We want to extend incorporation of known physics constraints
 - Solution: Include physics in network architecture itself: *QLKNN-HornNet* (P. Horn *et al.*, in preparation)
 - Solves challenge: Combing QLKNN-hyper nets compounds errors
 - Solves challenge: QLKNN-hyper training strategy allows for non-physical freedom
- We want to approximate the full QuaLiKiz model
 - Challenge: Hypercube dataset scales poorly with input dimensionality, multiple TCPUhI
 - Solution: Base on experimental data ⇒ QLKNN-jetexp, on A. Ho et al. PoP 2021.
 - New challenge: Need large database of profiles of different machines

Include physics in network structure: QLKNN-HornNet

New work by P. Horn, K.L. van de Plassche et al.

• Inspired by late-fusion techniques in RAPTOR [F. Felici, S. Van Mulders et al.]

Strategy: Force a Critical Gradient Model directly into network architecture

- Pro: Still general, but smooth 1st derivative of IO mapping
- Pro: Simple input/output derivatives
- Pro: Very sharp turbulent threshold

Combining CGM and NNs: The power of general NN tools

NN training techniques can be applied to arbitrary functions. So we can include a Critial Gradient Model as such:

QLKNN-HornNet

$$\begin{aligned} q_e(\mathbf{x}_g, x_s) &= c_{3,e} R(x_s - c_1) (|x_s - c_1|)^{c_{2,e}} \\ q_i(\mathbf{x}_g, x_s) &= c_{3,i} R(x_s - c_1) (|x_s - c_1|)^{c_{2,i}} \\ \Gamma_e &= NN(\mathbf{x}_g, x_s) R(x_s - c_1) \end{aligned}$$

"slope" $c_{3,[j,e]}(\mathbf{x}_g)$ "threshold location" $c_1(\mathbf{x}_g)$ "bendiness" $c_{2,[j,e]}(\mathbf{x}_g)$ network output $NN(\mathbf{x}_g, x_s)$ Rectifier $R(\cdot)$

Gives a well-constrained neural network model

Standalone QLKNN-HornNet performs well

- Shown in [P. Horn *et al.* MSc. thesis]
- Shows "bendiness" of QLKNN-hyper
- Warning: Bad slice of QLKNN-hyper, good slice of QLKNN-HornNet
- WIP: Implementation in RAPTOR. Paper to be submitted

QLKNN family: Include relevant physics in different ways

- We want to approximate the full QuaLiKiz model including isotopes, impurities
 - Challenge: Needs larger dataset, make sure QuaLiKiz is okay
 - Solution: Extend dataset \Rightarrow QLKNN-hyper-11D
- We want to extend incorporation of known physics constraints
 - Solution: Include physics in network architecture itself: *QLKNN-HornNet* (P. Horn *et al.*, in preparation)
 - Solves challenge: Combing QLKNN-hyper nets compounds errors
 - Solves challenge: QLKNN-hyper training strategy allows for non-physical freedom
- We want to approximate the full QuaLiKiz model
 - Challenge: Hypercube dataset scales poorly with input dimensionality, multiple TCPUh!
 - Solution: Base on experimental data \Rightarrow *QLKNN-jetexp*, on A. Ho *et al.* PoP 2021
 - New challenge: Need large database of profiles of different machines

QLKNN family: Include relevant physics in different ways

- We want to approximate the full QuaLiKiz model including isotopes, impurities
 - Challenge: Needs larger dataset, make sure QuaLiKiz is okay
 - Solution: Extend dataset \Rightarrow QLKNN-hyper-11D
- We want to extend incorporation of known physics constraints
 - Solution: Include physics in network architecture itself: *QLKNN-HornNet* (P. Horn *et al.*, in preparation)
 - Solves challenge: Combing QLKNN-hyper nets compounds errors
 - Solves challenge: QLKNN-hyper training strategy allows for non-physical freedom
- We want to approximate the full QuaLiKiz model
 - Challenge: Hypercube dataset scales poorly with input dimensionality, multiple TCPUh!
 - Solution: Base on experimental data \Rightarrow *QLKNN-jetexp*, on A. Ho *et al.* PoP 2021
 - New challenge: Need large database of profiles of different machines

QLKNN-jetexp-15D highlight

Has been applied for T-campaign JET hybrid scenario ramp-up optimization [A. Ho *et al.* APS invited 2021]

Section D

Wrap-up

1 Surrogates in integrated modelling (introducing QLKNN)

- **2** Application of PoP QLKNN to ITER cases
- Extensions to QLKNN model

4 Wrap-up

Conclusion

QLKNN family of models:

- are *ready for exploitation* in RAPTOR and JINTRAC
- are being integrated in *multiple frameworks*
- enables QuaLiKiz approximation 3-5 orders of magnitude faster

Improvements to QuaLiKiz and its family of surrogate models is ongoing

