Fast integrated modelling using a neural network surrogate model for
turbulent transport

Karel van de Plassche’+?

J. Citrin, F.J. Casson?, F. Felici*, A. Ho?,
F. Koechl?, S. Van Mulders?, O. Sauter?, and JET Contributors*

" DIFFER, PO Box 6336, 5600 HH Eindhoven, The Netherlands 3 CCFE, Culham Science Centre, OX14 3DB, Abingdon, UK
2Eindhoven University of Technology, Eindhoven, The Netherlands 4 EPFL-SPC, CH-1015 Lausanne, Switzerland

* See the author list of "Overview of JET results for optimising ITER operation’ by J. Mailloux et al.to be published in Nuclear Fusion Special issue: Overview and Summary Papers

from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021)

) .
November 30th, 2021 ) DIFFER (C-z’") EUROfusion



Section A
Surrogates in integrated modelling (introducing QLKNN)
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Integrated modelling primer
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QualiKiz: fast and accurate reduced turbulence model

Reduced quasi-linear gyrokinetic code

Multiple examples of agreement with experiments
6 orders of magnitude faster than nonlinear calculations
« Still in agreement with nonlinear flux due to saturation rule®”

® 10 CPU seconds to calculate turbulent fluxes at a single radial position
e QualLiKiz® + JINTRAC: O(24) hrs per second of JET
Open source: see http://qualikiz.com for more information
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http://qualikiz.com

Faster modelling by replacing QualLiKiz ...

Local dimensionless plasma parameters

R/Lr,
R/Lr,
R/Ln

3 10" CPUs* Heat flux g;.e
r/R Particle flux I';

Momentum flux IM;

* Depends on "physics”. It's 1 (no rotation) to 4 (rotation)
(’75) seconds per radial point per wavenumber
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... by fast Neural Network

Local dimensionless plasma parameters
R/Lt,
R/Ls,
R/Ln

In GyroBohm units

s 1072 -107°CPUs Heat flux g;

r/R »i Neural network(s) Particle flux I
Ti/Te Jacobians 9g;../0 (R/Lz,, ..., e)

5/25




Dataset of 300 million QualLiKiz points has been generated

variable # points min  max

Dataset spans wide Kops < 2 10 0.1 2
core-relevant regime, and kops > 2 8 35 36
is freely available on Zenodo: R/Ly, 12 0 14
doi.org/10.5281/zen0d0.3497065, R/Lr, 12 0 14
online visualization: R/Ln 12 5 6
q 10 0.66 15

E" E $ 10 -1 5

I: r/R 8 0.03 033

- a2 Ti/Te 7 025 25

v* 6 1% 107> 1

dataslicer.qualikiz.com Zeff > 1 3

Total flux calculations 3 x 108 =~ 1.3MCPUh
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Benchmark: good match between QLKNN and QualLiKiz

Simplified physics case
Based on high performance baseline JET 92436 [A. Ho et al. NF 2019]
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JINTRAC-RAPTOR-QLKNN benchmark at t=22.75s [K.L. van de Plassche et al. PoP 2020]
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No full QualLiKiz surrogate, but most important features are captured

Full physics case, based on high performance hybrid JET 92398 [Casson IAEA 2018]
Parameters not yet included in this QLKNN (e.g. a, R/Ly, ,,,,) can play a role; still good match!
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JINTRAC-QLKNN benchmark at t=22.75s [K.L. van de Plassche et al. PoP 2020]
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Essential: Capture physics in the surrogate model

Same threshold for all transport channels (g; ., I'e) essential

® Global regression measures less important than local features
¢ Global RMS error weak indicator of surrogate model quality

Essential for integrated modelling: Include this in surrogate model
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Physics-unaware: Less quality for the same rms!

Full physics case, based on high performance hybrid JET 92398 [Casson IAEA 2018]
NO special cost function, NO special train targets, same RMS of fit!

lel9
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JINTRAC-QLKNN-hyper-10D vs a network trained on the full fluxes at t=22.75s [K.L. van de Plassche et al. PoP 2020]
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Section B
Application of PoP QLKNN to ITER cases
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New regime: ITER baseline core modelling

Very encouraging results, QLKNN performs similarly as for JET simulations in PoP2020
Based on [F. Koechl et al. IAEA 2018, P. Mantica et al. PPCF 2020], pedestal constrained by EPED.
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New regime: ITER hybrid

Reference run for WIP optimization exercise. « rule important for hybrid scenario due to large §
and large a. Based on [J. Citrin et al. NF 2010]. Final version in [S. Van Mulders et al. NF 2021]
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QLKNN-hyper-c = 0 on ITER hybrid with o 7 0 rule-of-thumb Seg = § — /2 in RAPTOR optimalization [S. Van Mulders et al.]
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Section C
Extensions to QLKNN model
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Include physics in network structure: QLKNN-hyper

Q

111l

111l

General unconstrained ‘combined NN’
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For ITG general input X, and special
input xs

Xg © {R/LTE,R/Ln, q, ...,Zeff}

% € {R/Ly}

QLKNN-hyper
Qe(Xg, Xs) = Nqu/q,(xgyxs) * NNg,(Xg, Xs)

qi(Xg, Xs) = NNg,(Xg, Xs)

re(xg7XS) = NNI'e/q,-(ngxs) * NNq,-(xgaXs)
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QLKNN family: Include relevant physics in different ways

® We want to approximate the full QuaLiKiz model including isotopes, impurities

» Challenge: Needs larger dataset, make sure QualiKiz is okay
 Solution: Extend dataset = QLKNN-hyper-77D
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https://doi.org/10.1063/5.0038290

QLKNN-hyper-11D: Extend to isotopes and impurities

variable # points min  max

) kops < 2 10 0.1 2

. !Extenq datase.t with Kops > 2 8 35 36
|mpgr|ty density RILL r 0 14
gradients RiLs " 0 14

® Includes updates to R/Ln, 1 5 5
physics and numerics, R/Ln, 12 15 15
see QualLiKiz-2.8.0' q 9 066 10

e Data generated, NN § 9 -1 4
training pipeline r/R 8 01 09
preparation ongoing. Ti/Te 7 025 25
2TiB of compressed v* 5 0 01
netCDF before filtering! nj/ne 4 0 03

Total flux calculations 2 x 10° =~ 8 MCPUh

"But not the most recent QLK version https://gitlab.com/qualikiz-group/QuaLiKiz/-/tags/2.8.2


https://gitlab.com/qualikiz-group/QuaLiKiz/-/tags
https://gitlab.com/qualikiz-group/QuaLiKiz/-/tags/2.8.2

QLKNN family: Include relevant physics in different ways

® We want to approximate the full QuaLiKiz model including isotopes, impurities
» Challenge: Needs larger dataset, make sure QualiKiz is okay
 Solution: Extend dataset = QLKNN-hyper-77D

® We want to extend incorporation of known physics constraints

e Solution: Include physics in network architecture itself: QLKNN-HornNet (P. Horn et al., in
preparation)
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QLKNN family: Include relevant physics in different ways

® We want to approximate the full QuaLiKiz model including isotopes, impurities
» Challenge: Needs larger dataset, make sure QualiKiz is okay
 Solution: Extend dataset = QLKNN-hyper-77D
® We want to extend incorporation of known physics constraints
e Solution: Include physics in network architecture itself: QLKNN-HornNet (P. Horn et al., in
preparation)
¢ Solves challenge: Combing QLKNN-hyper nets compounds errors
e Solves challenge: QLKNN-hyper training strategy allows for non-physical freedom
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Include physics in network structure: QLKNN-HornNet

New work by P. Horn, K.L. van de Plassche et al.

¢ Inspired by late-fusion techniques in RAPTOR [F. Felici, S. Van Mulders et al.]
Strategy: Force a Critical Gradient Model directly into network architecture

® Pro: Still general, but smooth 1st derivative of 10 mapping

® Pro: Simple input/output derivatives

® Pro: Very sharp turbulent threshold
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Combining CGM and NNs: The power of general NN tools

NN training techniques can be applied to arbitrary functions. So we can include a Critial
Gradient Model as such:

QLKNN-HornNet

e(Xg, Xs) = C3 eR(xs — C1)(|Xs — €1 )¢
qi(Xg, Xs) = C3,iRXs — C1)(|Xs — ¢1])24
Fe = NN(Xg, Xs)R(Xs — C1)

"slope” ¢z, (¢ (Xg)
"threshold location” ¢q(xg)
"bendiness” ¢, j ¢1(Xg)
network output NN(Xg, Xs)
Rectifier R(-)

Gives a well-constrained neural network model 20725



Standalone QLKNN-HornNet performs well

X Data: Energy flux electrons X
40.0 4 —— CGMnet: Energy flux electrons
—--=FFNN: Energy flux electrons .
X Data: Energy flux ions ® Shown in [P. Horn et al. MSc.
%300 { — CGMnet: Energy flux ions thesis]
T -==FFNN: Energy flux ions .
ic‘ & * Shows "bendiness” of
(] -
2 00 QLKNN-hyper
g ® Warning: Bad slice of
= QLKNN-hyper, good slice of
100 QLKNN-HornNet
* WIP: Implementation in
0.0 se=2e RAPTOR. Paper to be submitted
5 6 7 é 9 10

Normalized Temperature Gradient
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QLKNN family: Include relevant physics in different ways

® We want to approximate the full QuaLiKiz model including isotopes, impurities
» Challenge: Needs larger dataset, make sure QualiKiz is okay
 Solution: Extend dataset = QLKNN-hyper-77D

® We want to extend incorporation of known physics constraints

e Solution: Include physics in network architecture itself: QLKNN-HornNet (P. Horn et al., in
preparation)

¢ Solves challenge: Combing QLKNN-hyper nets compounds errors

e Solves challenge: QLKNN-hyper training strategy allows for non-physical freedom

* We want to approximate the full QualLiKiz model

e Challenge: Hypercube dataset scales poorly with input dimensionality, multiple TCPUh!
» Solution: Base on experimental data = QLKNN-jetexp, on A. Ho et al. PoP 2021
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QLKNN family: Include relevant physics in different ways

® We want to approximate the full QuaLiKiz model including isotopes, impurities
» Challenge: Needs larger dataset, make sure QualiKiz is okay
 Solution: Extend dataset = QLKNN-hyper-77D
® We want to extend incorporation of known physics constraints
e Solution: Include physics in network architecture itself: QLKNN-HornNet (P. Horn et al., in
preparation)
¢ Solves challenge: Combing QLKNN-hyper nets compounds errors
e Solves challenge: QLKNN-hyper training strategy allows for non-physical freedom
* We want to approximate the full QualLiKiz model
e Challenge: Hypercube dataset scales poorly with input dimensionality, multiple TCPUh!
» Solution: Base on experimental data = QLKNN-jetexp, on A. Ho et al. PoP 2021
» New challenge: Need large database of profiles of different machines
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QLKNN-jetexp-15D highlight
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Has been applied for T-campaign JET hybrid scenario ramp-up optimization [A. Ho et al. APS
invited 2021]
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Section D
Wrap-up

@ Wrap-up
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Conclusion

QLKNN family of models:
e are ready for exploitation in RAPTOR and JINTRAC
® are being integrated in multiple frameworks
® enables QualLiKiz approximation 3-5 orders of magnitude faster

Improvements to QualLiKiz and its family of surrogate models is ongoing
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