

Design of a soft X-ray imaging system and tomography analysis based on Bayesian principle

Reporter: Institution: Zu Yiming University of Science and Technology of China

Outline

Background

Bayesian experimental design

Bayesian tomography analysis

♦Summary

Soft X-ray tomography

◆ SXR tomography is widely used in fusion device

- SXR tomography can get the 2d image quickly
- SXR tomography has non-invasive character

Keda Torus eXperiment (KTX)

Keda Torus eXperiment

Reversed field pinch

parameters	КТХ
Major radius R (m)	1.40
Minor radius a(m)	0.40
R/a	3.5
Thickness of conductive shell (mm)	1.5
Poloidal magnetic flux	3~5Wb
Loop voltage V _{loop} (V)	10~50
Plasma density (10 ¹⁹ m ⁻³)	2
Electronic temperature T _e (eV)	300 (Phase I)
Maximum toroidal field Bt (T)	0.35 (Phase I)

Purpose of SXR design

Quasi-single-helical states is an important way to improve the confinement of RFP and it will be studied on KTX in the future

Requirement

- Get enough information of changed QSH states
- Get the 2d image of QSH states
- ◆ Use less resources (camera location, sight line)

Meet requirements with as few resources as possible!

flux surface of QSH state

Outline

Background

Bayesian experimental design

Bayesian tomography analysis

♦Summary

Bayesian experimental design

$$p(X|Y,I) = \frac{p(Y|X,I) \cdot p(Y|I)}{p(X|I)}$$

$$P(\boldsymbol{\alpha}|\boldsymbol{\eta}) = \frac{1}{\alpha_{max} - \alpha_{min}}$$

$$P(D|\boldsymbol{\alpha},\boldsymbol{\eta}) = \frac{1}{\sigma\sqrt{2\pi}}\exp(-\frac{(D-f(\boldsymbol{\alpha}))^2}{2\sigma^2})$$

Bayesian theory

 α : interest parameters –plasma edge η : design parameters – sightline D: experimental data

$$p(\boldsymbol{\alpha}|\boldsymbol{D},\boldsymbol{\eta}) = \frac{p(\boldsymbol{D}|\boldsymbol{\alpha},\boldsymbol{\eta}) \cdot p(\boldsymbol{\alpha}|\boldsymbol{\eta})}{p(\boldsymbol{D}|\boldsymbol{\eta})}$$

The probability for interest parameters

Bayesian experimental design

The information gain of η

α: interest parameters –plasma edge
η: design parameters – sightline
D: experimental data – SXR emissivity

The BED approach allows us to quantitatively evaluate the performance of the design, and to estimate the design robustness

SXR sightline design

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

SXR sightline design

Camera location: $\varphi = 0^{\circ}, \varphi = 180^{\circ}$ Camera opening angle: $\Delta\beta = 100^{\circ}$

Outline

Background

Bayesian experimental design

Bayesian tomography analysis

♦Summary

Tomography Reconstruction

$$p(\alpha|D,\eta) = \frac{p(D|\alpha,\eta) \cdot p(\alpha|\eta)}{p(D|\eta)}$$

$$p(\boldsymbol{g}|f,\boldsymbol{\theta}) = \frac{p(f|\boldsymbol{g}) \times p(\boldsymbol{g}|\boldsymbol{\theta})}{p(f|\boldsymbol{\theta})}$$

g: interest parameters – emissivity distribution
θ: design parameters – reconstruction method
f: experimental data – brightness

Get *g* from *f*

Cormark-Bessel method

$$f(p,\varphi) = \int_{L(p,\varphi)} \frac{g(r,\theta)}{dl} dl$$

Tomography Reconstruction

$$g(r,\theta) = \sum_{m=0}^{\infty} \sum_{l=0}^{\infty} [a_m^{(c)l} \cos(m\theta) + a_m^{(s)l} \sin(m\theta)] g_m^l(r)$$

Expend in Fourier series
$$f(p,\varphi) = \sum_{m=0}^{\infty} \sum_{l=0}^{\infty} [a_m^{(c)l} f_m^{(c)l}(p,\varphi) + a_m^{(s)l} f_m^{(s)l}(p,\varphi)]$$

$$f_m^{(c,s)l}(p,\varphi) = \int_L (\cos(m\theta), \sin(m\theta)) g_m^l(r) ds$$

$$g_m^l(r) = J_m(\lambda_m^{l+1}r)$$

$$\lambda_m^l \text{ is the lth zero of mth Bessel function}$$

Parameters of method

$$f_m^{(c,s)l}(p,\varphi) = \int_L (\cos(m\theta), \sin(m\theta)) g_m^l(r) ds$$
$$p(g|f,\theta) = \frac{p(f|g) \times p(g|\theta)}{p(f|\theta)}$$

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Tomography analysis

The reconstruction of QSH states need at least 2 SXR cameras

 $\Delta \phi$ is the angle between 2 camera

Tomography analysis

♦ It can be divided into two parts with Δφ = 130°
♦ Part 1 has a peak at Δφ = 60°
♦ Part 2 has a peak at Δφ = 180°

2D image of SXR

Summary

- The experimental design is accomplished with two windows and open angle 100°
- The BED approach allows us to quantitatively evaluate the performance of the design, and to estimate the design robustness.
- The Bayesian theory can be used to analyse the tomography reconstruction and we use it to modify the reconstruction method and do two camera design.

Thank you!

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA