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Introduction to Causality Detection

Causality is the influence that one time series (or an event) has on another time series (or another event)

Granger’s Causality:

“We say that a variable X that evolves over time Granger-causes another evolving variable Y if predictions 
of the value of Y based on its own past values and on the past values of X are better than predictions of Y 
based only on Y's own past values.”

Note: Correlation does not imply causality! 

Example:

"If data shows that as the number of fires increase, so does the number of fire fighters. Therefore, to cut 
down on fires, you should reduce the number of fire fighters." - Pearl, Book of Why 2018
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• Concept of Causality used:
“A time series X causes another time series Y if when the past of X is removed from the possible drivers of Y, the 
prediction performances on Y degrade” 
• The networks are run to predict the next time point  

X Y Z

Y Z

Prediction error with all
possible drivers:
Median: 𝑋

Standard deviation: 𝜎

Prediction error removing
the analysed driver:
Median: 𝑋

Standard deviation: 𝜎

Causality detection:

𝑍௦ =
𝑋 − 𝑋

𝜎
ଶ + 𝜎

ଶ

𝑖𝑓 𝑍௦ > 𝑍௧௦ௗ

𝐶𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦 = 1

Ensemble

Ensemble

Algorithm logic

Causality quantification:

𝑅௦ =
ௌ(ா,)

ௌ ாೣ, )

Causality detection by Time Delay Neural Network
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Types of influence tests (1)

The capability to detect different types of influences have been analysed. 

General formulation of bivariate case: 

𝑥 𝑖 = 0.5 𝑥 𝑖 − 1 + 𝜎௫(𝑖)

𝑦 𝑖 = 𝑓 𝑥 𝑖 − 1 , 𝑦 𝑖 − 1 + 0.7 𝑦 𝑖 − 1 + 𝜎௬(𝑖)

Example: Multiplicative Quadratic Influence

𝑥 𝑖 = 0.5 𝑥 𝑖 − 1 + 𝜎௫(𝑖)

𝑦 𝑖 = 𝐶𝑥 𝑖 − 1 ଶ𝑦(𝑖 − 1) + 0.7 𝑦 𝑖 − 1 + 𝜎௬(𝑖)

C: coupling constant
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Types of influence tests (2)

The capability to detect different types of influences have been analysed. 

Tests have been performed on: additional and multiplicative linear, quadratic, exponential and sine functions

Overall Causality detection and quantification performances: 

𝑹𝒔𝒊𝒈𝒎𝒂 − 𝟏 𝒗𝒔 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒍𝒆𝒔𝒔 𝑪 (𝑪𝑭)
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Comparison with the literature

Comparison with the methods analysed in the review “A. Krakovská, Physical Review E 97, 042207 (2018)” 

Methods investigated: 

1. Granger’s vector autoregressive test (G)
2. Extended Granger test (EG)
3. Kernel Granger test (KG)
4. Conditional mutual information (CMI)
5. Cross mappings (CCM)
6. Predictability improvements (PI)

Systems investigated: 

1. Coupled autoregressive models (AR models)
2. Hénon-Hénon
3. Rössler-Lorenz
4. Rössler-Rössler
5. Bidirectional two species
6. Fishery model
7. Mediated Link

G EG KG CMI CCM PI
CauseNet -
Ensemble

AR models

False 
Negative

0% 0% 0% 0% 0% 71% 0%

False Positive 0% 0% 0% 0% 100% 0% 0%

Hénon-Hénon

False 
Negative

0% 0% 0% 0% 0% 0% 0%

False Positive 65% 100% 0% 0% 88% 0% 0%

Rössler-Lorenz

False 
Negative

0% 0% 0% 0% 0% 0% 0%

False Positive 87% 100% 87% 60% 87% 0% 6%

Rössler-Rössler

False 
Negative

0% 0% 0% 0% 0% 22% 0%

False Positive 45% 100% 64% 18% 82% 0% 0%

Two-species

False 
Negative

0% 0% 0% 0% 0% 0% 0%

False Positive \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Fishery Model

False 
Negative

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

False Positive 100% 0% 100% 100% 100% 0% 0%

Mediated Link

False 
Negative

0% 0% 0% 0% 0% 100% 0%

False Positive 100% 100% 100% 0% 0% 0% 0%

Mean 
performances 
(averages of all 
systems)

False 
Negative

0% 0% 0% 0% 0% 32% 0%

False Positive 66% 67% 59% 30% 76% 0% 1%
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Some critical cases

We may have an unsteady state causality (causality changing with time) 

Confounder

𝑥 𝑖 = 0.5 𝑥 𝑖 − 1 + 0.2 𝑧(𝑖 − 2) + 𝜎௫(𝑖)

𝑦 𝑖 = 𝐶𝑥 𝑖 − 1 + 0.7 𝑦 𝑖 − 1 + 0.3 𝑧 𝑖 − 2 + 𝜎௬ 𝑖

𝑧 𝑖 = 0.6𝑧 𝑖 − 1 + 𝜎௭ 𝑖

Mediator

𝑥 𝑖 = 0.5 𝑥 𝑖 − 1 + 0.2 𝑧(𝑖 − 1) + 𝜎௫(𝑖)

𝑦 𝑖 = 𝐶𝑥 𝑖 − 1 + 0.7 𝑦 𝑖 − 1 + 𝜎௬(𝑖)

𝑧 𝑖 = 0.6𝑧 𝑖 − 1 + 𝜎௭(𝑖)

Feedback loop

𝑥 𝑖 = 𝜎௫(𝑖)

𝑦 𝑖 = 0.3𝑥 𝑖 − 1 + 0.25 𝑧 𝑖 − 1 + 𝜎௬(𝑖)

𝑧 𝑖 = 0.6𝑥 𝑖 − 1 + 0.44 𝑦 𝑖 − 1 + 𝜎௭(𝑖)

No errors, all these systems have 
been correctly detected
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Critical cases: time varying causal influnces

We may have causal influences changing with time  (structural changes)

Example: 

𝑋 𝑖 = 0.3 𝑋 𝑖 − 1 + 𝜎(𝑖)

𝑌 𝑖 = 0.7 𝑌 𝑖 − 1 + 𝜎(𝑖)

𝑍 𝑖 = 0.5 𝑍 𝑖 − 1 + 𝜎௭ 𝑖 + ൝
0.5 𝑋 𝑖 − 1      𝑖𝑓 𝑖 ≤ 𝑖

0.5 𝑌 𝑖 − 1     𝑖𝑓 𝑖 > 𝑖

Causality is correctly identified:

X

Y

Z
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A high dimensionality case

A system of 15 time series:

𝐴 𝑖 = 0.9𝐴 𝑖 − 1 + 𝜎(𝑖)

𝐵 𝑖 = 0.8𝐵 𝑖 − 1 + 0.2𝐴(𝑖) + 𝜎(𝑖)

𝐶 𝑖 = 0.7𝐶 𝑖 − 1 + 𝐵 𝑖 − 1 ଶ + 𝜎(𝑖)

𝐷 𝑖 = 𝑒ଵ(ିଵ) + 𝜎(𝑖)

𝐸 𝑖 = 0.5𝐸 𝑖 − 1 + 𝜎ா(𝑖)

𝐹 𝑖 = 0.5𝐹 𝑖 − 1 + 0.7𝐻(𝑖 − 1) + 𝜎ி(𝑖)

𝐺 𝑖 = 0.5𝐺 𝑖 − 1 − 0.2𝐹(𝑖 − 2) + 𝜎ீ(𝑖)

𝐻 𝑖 = 0.7𝐻 𝑖 − 1 + 0.3|𝐺 𝑖 − 1 | + 𝜎ு(𝑖)

𝐼 𝑖 = 0.7𝐼 𝑖 − 1 + 𝜎ூ(𝑖)

𝐿 𝑖 = 0.7𝐿 𝑖 − 1 − 𝐿(𝑖 − 1)𝐼(𝑖 − 1) + 𝜎(𝑖)

𝑀 𝑖 = 0.7𝑀 𝑖 − 1 − 0.3𝐼(𝑖 − 1) + 𝜎ெ(𝑖)

𝑁 𝑖 = 0.7𝑁 𝑖 − 1 + 10𝐿 𝑖 − 1 𝑀(𝑖 − 1) + 𝜎ே(𝑖)

𝑂 𝑖 = 0.5𝑂 𝑖 − 1 + 𝜎ை(𝑖)

𝑃 𝑖 = 0.5𝑃 𝑖 − 1 + 0.2𝑂(𝑖 − 1) + 𝜎(𝑖)

𝑄 𝑖 = 0.5𝑄 𝑖 − 1 + 0.3𝑂 𝑖 − 1 + 0.5𝑃(𝑖 − 2) + 𝜎ொ(𝑖)
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Conclusions

Time Delay Neural Network Ensembles have clearly the capability to:

1. Correctly detect causality in several cases, with (potentially) all types of functionality

2. Detect feedback loops, confounders, mediators

3. Quantify causality

4. Provide information about the causality trend (as a function of time)

5. Deal with large number of time series
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Thank you for your attention!
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Appendix A – Z threshold

Parametric analyses have been performed to find the best Z threshold:

𝑍௧௦ௗ,௦௧~2


