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Turbulent transport simulations with gyrokinetic codes
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O First-principle based gyrokinetic codes

* The time evolution of the perturbed distribution function is solved

inthe 5

D phase-space.

— Predictions of turbulent fluxes
- Investigations into underlying turbulence physics

* Huge computational resources are required.

* An enormous amount of calculation data is generated.

-

Based on the data collected,

.

v’ evolving processes can be visualized as images and

v these images must contain much information on
turbulence evolution.

=>» A new tool to reduce the computational cost
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Patterns of the distribution function in the wavenumber space

time=0.000
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* A nonlinear calculation with GKV for JT-60U plasma parameters
— JT-60U #45072@p=0.76: ITG/TEM
— 4,608 cores x 60 hours @ITO
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‘f‘z(kx, ky) images differ phase by phase

1e+08 .
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Convolutional Neural Network model: EfficientNet
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EfficientNet (ENet) [Tan icmL19]

* A state-of-the-art convolutional neural network (CNN) model in 2019

* Pre-trained with ImageNet datasets

* Variants with different network depth: We use EfficientNet-B4.

* Very high transfer learning performance (important!) & Fine tuning

Feature learning
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The simulation time is predictable from the image

Train ENet for regression (prediction)

Feed images and their corresponding time in the linearly and

1e+08

—— Nonlinear calc. - Linear calc.
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ENet as a predictor for efficient runs

Predictive capability makes it possible to choose the fastest case of all.

* Make use of ENet trained with “Base” case data (black line)
* Execute several GK runs with different initial amplitudes for a while and pick up the seemingly fastest case

Saturation time
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It will be saturated soon [ The simulation is still in the midst of the growing phase. ]

v" The saturation time can be roughly forecasted at an early stage.
v" Save numerical resources by keeping the fastest case and eliminating the rest.




Generalization of ENet-based predictor
for different dominant instabilities
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* Three cases prepared for different dominant instabilities based on
the Cyclone base case (CBC), which is a de facto standard DIII-D
parameter set for gyrokinetic simulation benchmarking tests.

ENet for ITG/TEM (CBC original)

w74

ion diamag.

0 0.4

0.8 1.2 1.6
KyPrp

ENet for ITG

(Vi Raxi)s @/(Vig/ Rayi)/4

0.6

0.3

-0.3

-0.6

Ss
~
S~
S
S~

0O 01 02 03 04 05 0.6
KyPrp

R/Lz, R/Lr, R/Ly, Te/T;
CBC 6.92 6.92 2.22 1
Pure ITG 6.92 0 2.22 1
Pure TEM 1 8 3 3
ENet for TEM
2 T T
Sy w/4.
‘E§ 15F YV A
_'9.
=
3 i
’T%
x
-.9_ —
=
<
5 . elec. diamag.
0 0.4 0.8 1.2 1.6
KyPtp

Linear calculations can be performed at low numerical cost.

=» Choose the best model to better predict the time based on the linear results performed at initial.
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Methodology for actual application

: : Choose the suitable . :
Linear calculation Predict the time
model
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Pre-assessing the linear stability leads to higher predictability.
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Conclusions and future work

 The powerful CNN model, EfficientNet, is able to distinguish the minuscule difference between images of
fluctuations in the wavenumber space.

 ENet has an ability to select the simulation that finishes the fastest for obtaining the result as fast as possible
and saving computational resources.

* By preparing multiple ENet models with different dominant instabilities, high prediction performance can be
achieved for untrained cases.

[The ENet models are helpful to study turbulent transport with gyrokinetic simulations effectively. ]

Future plan
» Multimodality for higher accuracy

» Predicting the turbulent saturation levels
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Turbulence regulates plasma confinement

JT-60SA

5

» The balance between transport and sources determines
density and temperature profiles.

" 4

Particle and heat
transport

Particle and heat source

» Turbulence is dominant in tokamak plasmas.

3 s » Massive computational cost is required to estimate turbulent fluxes.

- 12 . . . . 4
\ :'m 10 Turbulent E sl Turbulent
S 8f
v Predicting and understanding turbulent transport = 6f % Al
quickly and efficiently are crucial issues. % A < N
i i o . 5 :
=» Taking data-driven approaches, we have £ o Neoclassical | 2 _ Neoclassical
developed neural-network (NN) based models. Y 252 04 06 o8 0 02 04 06 08 1
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High |f|* areas gradually move toward the Iow

wavenumber region.

v The patterns in the velocity space have also been checked.
=>» The structure changes in the growing phase, and it

t =7.5
16

1.4

1.2 4

1.0 4

S 08

0.6 1

0.4 1

0.2 4

0.0

-20 -15 -1.0

5
44
3
_|
A
24
1
0-

breaks in the saturation phase.

-0.5 0.0 0.5 10 15 2

kx

-4

~

g 0.8

t =13

14

12

10

0.6

0.4

0.2

0.0

-2.0 -15 -1.0

5

-05 ;00 05 10 15 20

Ky

4

34

0.001

2.
2
S

— 001}

0.4

0.2

0.0

"

0.90

0.75

0.60

- 0.45

r0.30

r0.15

-20 -15 -1.0

5

-0.5 _0.0 0.5 1.0 15 2.0

X

4

0.9

0.6

0.3

0.0

=03

-0.6

-0.9

] (S 1)xew/,| ]

([¢/f1eg)xew/[d/ /]




Classification of the |f|* patterns by the CNN model

e Number of data

— Train: 5,403 True

Confidence score—>(__1.0000

— Validation: 1,543
— Test: 772

v Accuracy for test data: 99.9%

=> The |f|? patterns can be classified by
transfer learning based on the pre-
trained CNN with real-world images.

> Visualization of focus areas

> saturation: c lin growing: a saturation: c |
1.0000 1.0000 ]
C = MEE C
A

Prediction '
[saturéiion: c nl growing: b saturation: c |
(__1.0000 1.0000 1.0000 )
C ; C

|

Input (£=24, c) Focus area

In the saturation phase,

* high |f|* areas are located in
the low k,, region.

v" The model is focusing on the low 2
k, region.

=>» A potential tool to understand

turbulence physics




Generalization of ENet-based predictor

1e+08

Caveats of the current ENet-based predictor, based on JT-60U data

* It may not be applicable to the case away from that corresponding to the ey
dataset used to train ENet. .

* The cases with different linear dispersion relations will exhibit different £ o
fluctuation growth patterns. ol
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» Develop an ENet-based predictor trained on the Cyclone base case (CBC),
which is a de facto standard for gyrokinetic simulation benchmarking tests.

» Test the performance when applied to the previous JT-60U case




ENet trained with Cyclone base case dataset

Test the predictive capability of ENet trained with CBC datasets for the CBC.

Extremely high R?: 0.9945

=>» The excellent performance was demonstrated for the CBC as well.

CBC ENet

Apply the CBC ENet to JT-60U data (#45012@p=0.76) for prediction @
Fairly high R?: 0.7634 e il

=» Overall trend has been captured well.

4
4
4
4
K

10

16
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ENet trained with Cyclone base case dataset

Test the predictive capability of ENet trained with CBC datasets for the CBC. CVFIO”e base case (CBC)

Extremely high R?: 0.9945 o /
=>» The excellent performance was demonstrated for the CBC as well. 2 /
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’ JT-60U #45072@p=0.26

CBC ENet 6
Apply the CBC ENet to JT-60U data (#45012@p=0.26) for prediction !c@’ f, /1;(: 0.9945

=» Predicted a time farther into the future than it actually is
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Multiple ENet models classified by dominant instabilities

Three cases prepared for different dominant instabilities
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Linear calculations can be performed at low numerical cost.
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=>» Choose the best model to better predict the time based on the linear results performed at initial.




