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Extended Fluid Code 

 Extended Fluid Code (ExFC) 

• Based on multi-scale turbulence physics on Tokamaks 

• Using finite difference method to sovle 5-field electrostatic equation 

• Able to simulate distabilities including TM, ITG, TEM and KBM 

 

 

J. Weiland, et al. NF 29 (1989) 
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Extended Fluid Code 

 Time cost 

• Grid size: 128 × 256 × 128 

• A time slice cost: 2 mins  

• A case cost: around 4 hours 

• Parameter scanning and threshold determination: A few days 

Calculated 

ExFC cases 

Flux 

prediction 

model  

Average Flux 

Prediction 

Surrogate 

model 

Database 

Full Time 

Trace 

Production 

Using neuron networks to shorten the time cost! 
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Part II: Flux Prediction Model 



Model Structure 
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Model layer 

Number 

of 

neurons 

Purpose 

1 

Input 3 

Predict 

tuebulence 

type 

Dense 8 

Dense 11 

Output 1 

2 

Input 7 
Predict 

radial 

density 

profile 

Dense 40 

Dense 40 

Output 1 
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Predict Turbulence Type 

Main 

Turbulence 

Type 

TEM ITG&TEM ITG 

Accuracy 0.994 0.910 0.997 
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Predict Radial Density Profile 

Succefully 

predicted 

the structure 

changed by 

fluctuation 

 𝑅𝑀𝑆𝐸 =
1

𝑁
 𝑛𝑛

𝑁𝑁 − 𝑛𝑛
𝐸𝑥𝐹𝐶 2𝑁

𝑛=1 = 0.0088 

 Relative error less than 0.7% 
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Part III: Surrogate Model 
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Data Processing 

 Data structure: [810, 99, 6, 128] 

 

 [case, time, channel, radial location] 

 

 Density flux, electron temperature flux, ion temperature flux, ion temperature, 

electron temperature, density 

Channel: 6 

Time: 99 

Radial 

location: 128 

... 

Case: 810 
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Data Processing 

 Problem analysis 

• Multivariate time-relevant regression problem: 

using data of former time slices to predict data 

of next time slices 

• Using data of 5 time slices to predict data of 

next 5 time slices shfited by 1 time slice 

 Recurrent neuron network: Gated Recurrent Unit 

 Database rearrange 

• Merging the channel dimensionn and radial 

location dimension into a single dimension of 

size 768 

• Using a window of size 5 to cut the time 

dimension: [76140, 5, 768] 

• Training set: [60912, 5, 768] 

• Validation set: [15228, 5, 768] 

 

Batch 

Input 

Channel * Radial 

location = 768 

Output 

 Input 

• [None, 5, 768] 

• [batch_size, time_step, 

channel * location] 

 Output 

• [None, 5, 768] 

• [batch_size, time_step, 

channel * location] 



13 

Model Structure 

Input 

Dense 512 

GRU 256 

GRU 256 

Dense 768 

Concat 1536 

Dense 768 

Output 
 

Layer 

Number of 

neurons/units 

Output 

Shape 

Input 768 [None, 5. 768] 

Dense 512 [None, 5, 512] 

GRU 256 [None, 5, 256] 

GRU 256 [None, 5, 256] 

Dense 768 [None, 5, 768] 

Concat / [None, 5, 1536] 

Dense 768 [None, 5, 768] 

Residual 

connection 
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Training Process 

 Batch size:32 

 Optimizer: Nadam 

 Learning rate: 1e-5 

 Loss function: mean square error 

 Callback: early stop 

Epoch Training loss Validation loss 

248 4.9652e-5 1.6971e-4 

 Traning loss is 3 times less than validation 

loss 

 Overfitting 
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Model Evaluation 

 Evaluation method 

• Using the trained model to predict adjacent samples 

• Merge the last time slice of each predicted results 

 Relative error: 
𝑛𝑁𝑁−𝑛𝐸𝑥𝐹𝐶

𝑛𝐸𝑥𝐹𝐶
 

Input 

output 

... 

prediction 
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Model Evaluation 

 First row: density flux given by 

ExFC 

 Second row: density flux given by 

neuron networks 

 Third row: relative error 

 

 A total relative error less than 16% 

 Errors are mainly centered at areas 

where fine structures of turbulence 

exist 

 

Case 1 Case 2 Case 3 
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 First row: ion temperature flux 

given by ExFC 

 Second row: ion temperature flux 

given by neuron networks 

 Third row: relative error 

 

 A total relative error less than 

17.5% 

 Errors are mainly centered at areas 

where fine structures of turbulence 

exist 

 

Model Evaluation 

Case 1 Case 2 Case 3 
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Self-iteration 

 Using output as input to call the predict method iteratively 

𝑡 = 3 𝑡 = 1 𝑡 = 2 𝑡 = 0 

Density Flux 
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Self-iteration 

Density  

𝑡 = 20 𝑡 = 5 𝑡 = 10 𝑡 = 0 
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Self-iteration 

 Flux 

• NN model is only able to forecast data of 1-3 time slices ahead within a 

relative error of about 20% 

 

 Density/Temperature 

• NN model is able to forecast data of 10-15 time slices ahead within a 

relative error of about 5% 

 

 NN model is suitable for density/temperature data forcasting 

 

 Time cost for NN model 

• Seraval microseconds for a time slice 

• If run NN model and ExFC alternatively, about 50-75% less time will be 

consumed for a single case (if we neglect the error caused by NN model) 
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Part IV: Summary 



22 

Summary 
 Flux prediction model 

• Sevaral flux prediction neuron networks have been developed to predict the type of 

turbulence and different macro parameters based on the database of ExFC. 

• These models achieve a high performance on prediction with a relative error of less than 

5%. 

 

 Surrogate model 
• A recurrent neuron network has been established using the Gated Recurrent Unit. 

• This model is able to predict data of one step ahead with a relative error less than about 

20%. 

• Some parts of turbulent structures are preserved, while other parts are smoothed, leading 

to information loss in the predicted data. 

• At this moment, the model can only reproduce 1 to 3 time slices of the original data 

given by ExFC through self-iteration with an acceptable relative error. 
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