

International Atomic Energy Agency

Application of Tomography methods in EAST Line-Integrated Radiation Diagnostics

L. Q. Xu¹, Y. M. Duan¹, Y. Chao^{1,2}, C.W. Mai^{1,2}, K.Y.Chen¹, E.Z.Li¹, H.X.Qu^{1,2}, S.Y.Lin¹, T.B.Wang³ and L. Q. Hu¹

¹Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China

²University of Science and Technology of China, Hefei 230026, China

³Southwestern Institute for Physics, CNNC, Chengdu 610200, China

30th Nov – 3th Dec 2021

Topical issues on Inverse Problem

4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis

Outline

- I. 2-D tomographic reconstruction
- II. Tomography methods on EAST
 - Abel method
 - Fourier-Bessel method (SXR)
 - Constrained optimization method (divertor XUV)
 - L-curve Tikhonov method (GEM)
 - Gaussian progress method (SXR, HX and XUV)
 - Neural network method (CNN, FCNN and VGGNet)
- **III.** Applications
 - MHD mode structure analysis (by SVD)
 - Impurity density estimation
- **IV. Summary and Outlook**

2-D tomographic reconstruction

- **Line-Integrated diagnostics**
 - Soft X-ray
 - XUV/bolometer
 - **Gas Electron Multiplier**
 - Hard X-ray
 - Point
 - EUV, XCS...
- **Forward model**
 - More unknowns than equations
 - ill-posed problem

$$\bar{d}_M = \overline{\bar{R}}\bar{E}_N$$

GEM Tangential camera

Rim

LOS of XUV system

Forward and inverse problems

- Forward problem
 - From \overline{E}_N to \overline{d}_M
 - Forward calculation
 - Possible distribution verification

 $\bar{d}_M = \overline{\bar{R}}\bar{E}_N$

- Inverse problem
 - From \overline{d}_M to \overline{E}_N
 - Indirect method
 - ill-posed problem, multi-solutions

possible distribution

measurements & calculations

SXR reconstructions

Forward method

Key issues

- Plenty prior information (predicted by codes)
- Plenty comparation of measurements and calculations (multi-arrays detection, perturbation amplitude and phase)

hypothetical distribution(1-D/2-D)

Outline

- I. 2-D Tomographic reconstruction
- II. Tomography methods on EAST
 - Abel method
 - Fourier-Bessel method (SXR)
 - Constrained optimization method (divertor XUV)
 - L-curve Tikhonov method (GEM)
 - Gaussian progress method (SXR, HX and XUV)
 - Neural network method (CNN, FCNN and VGGNet)
- **III.** Applications
 - MHD mode structure analysis (by SVD)
 - Impurity density estimation
- **IV. Summary and Outlook**

(1) Abel method

Abel model:
$$E_{j} = \sum_{i} L_{ij}^{-1} B_{i}$$

circular:
$$L_{ij} = \begin{cases} 2\sqrt{p_{j}^{2} - r_{i}^{2}} & (p_{j} > r_{i}, i = j) \\ 2(\sqrt{p_{j}^{2} - r_{i}^{2}} - \sqrt{p_{j-1}^{2} - r_{i}^{2}} & (p_{j} > r_{i}, i \neq j) \\ 0 & (p_{j} > r) \end{cases}$$

$$I_{ij} = \begin{cases} \sqrt{(x_{i,j}^{High} - x_{i,j-1}^{High})^{2} + (y_{i,j}^{High} - y_{i,j-1}^{High})^{2}} + \\ \sqrt{(x_{i,j}^{Low} - x_{i,j-1}^{Low})^{2} + (y_{i,j}^{Low} - y_{i,j-1}^{Low})^{2}} \\ 0 & (i > j) \end{cases}$$

Processes the 2-D problem to 1-D, too simple to applicate to SXR, XUV and HX complex tomography in Tokamak.

(2) Fourier-Bessel method (SXR)

Angular Fourier expansion of emissivity:

$$g(r,\theta^*) = \sum_{m=0}^{M} [g_m^c(\rho)\cos(m\theta^*) + g_m^s(\rho)\sin(m\theta^*)].$$

Radial Bessel expansion of emissivity:

$$f = \sum_{m=0}^{M} \sum_{l=0}^{L} \int_{L} [a_{ml}^{c}(\rho) \cos(m\theta^{*}) + a_{ml}^{s}(\rho) \sin(m\theta^{*})] J_{m}(\lambda_{m}^{l+1}\rho) dL$$

- LFCS as boundary (emissivity=0)
- Suitable for SXR (core SXR emissivity and core MHD perturbation reconstruction)
- Unsuitable for XUV
- Smooth reconstructions

K. Chen, L. Xu[#], et al., Rev. Sci. Instrum. 87 (2016) 063504

International Atomic Energy Agency

(2) Fourier-Bessel method (SXR)

- Magnetic flux coordinates for non-circular configuration (to characterize polar angle and radius accurately).
- Assuming emissivity is a function of ψ .
- Suitable for reconstructing core SXR and peeking XUV emissivity.

(3) Constrained optimization method (divertor XUV)

Minimum problem:

 $\chi^{2} = \left(\mathbf{Kg} - \mathbf{f}\right)^{\mathrm{T}} \mathbf{W} \left(\mathbf{Kg} - \mathbf{f}\right) = 0$

Regular matrix:

$$\phi = \frac{1}{2}\chi^2 + \alpha \mathcal{R}$$

$$\mathcal{R}(g) = \iint \left\{ \nabla \bullet \left[\boldsymbol{D} \bullet \nabla g(x, y) \right] \right\}^2 dx dy$$
$$= \iint \left[\nabla \bullet \left(\boldsymbol{n} D_{\perp} \boldsymbol{n} \bullet \nabla g(x, y) + \boldsymbol{t} D_{\parallel} \boldsymbol{t} \bullet \nabla g(x, y) \right) \right]^2 dx dy$$

$$\boldsymbol{H} = \left(\boldsymbol{C}_{x}\boldsymbol{D}_{x} + \boldsymbol{C}_{y}\boldsymbol{D}_{y} + \boldsymbol{C}_{xx}\boldsymbol{D}_{xx} + 2\boldsymbol{C}_{xy}\boldsymbol{D}_{xy} + \boldsymbol{C}_{yy}\boldsymbol{D}_{yy}\right)^{\mathrm{T}}\boldsymbol{F}\left(\boldsymbol{C}_{x}\boldsymbol{D}_{x} + \boldsymbol{C}_{y}\boldsymbol{D}_{y} + \boldsymbol{C}_{xx}\boldsymbol{D}_{xx} + 2\boldsymbol{C}_{xy}\boldsymbol{D}_{xy} + \boldsymbol{C}_{yy}\boldsymbol{D}_{yy}\right)\Delta x\Delta y + \boldsymbol{C}_{0}$$

$$F_{ij}^{(n)} = \begin{cases} \left(\overline{g}^{(n)} / g_{j}^{(n)}\right)^{\beta} \delta_{ij} &, g_{j}^{(n)} \ge \gamma \overline{g}^{(n)} , n > 0 \\ \delta_{ij} &, g_{j}^{(n)} < \gamma \overline{g}^{(n)} , n > 0 \end{cases}$$

C: diagonal matrix D: matrix derivative

C₀: Constant matrix, to adjust the emissivity of a specific area

XUV reconstructions of diverter plasma during ELMs Y. Duan, et al., J. Nucl. Meter.. 438 (2013) S228-S341

- XUV radiation outside LFCS can be reconstructed (reconstructions will not be negative like the maximum entropy method).
- Regular matrix introduces two free parameters (complicated regular matrix)
- Equilibrium needed
- No large radial radiation gradient

(4) L-curve Tikhonov method (GEM)

Introduce $\|\lambda C \varepsilon\|$:

Positive definite term error: $||Ax - b||^2 = \lambda^4 \sum_{i=1}^n (\beta_i / (\gamma_i^2 + \lambda^2))^2$ Residual error: $||x||^2 = \sum_{i=1}^n (\gamma_i \beta_i / (\gamma_i^2 + \lambda^2))^2$ $(L \cdot C^{-1}) = U \cdot \gamma \cdot V^T$ $\boldsymbol{\beta} = \boldsymbol{U}^T \cdot \boldsymbol{I}$

(β and γ can be obtained by SVD)

- Simple positive definite matrix (no need for equilibrium)
- λ determined by L-curve technology
- Radial radiation symmetry assumed (mapping 3D measurements to 2D cross- section)

H. Qu, et al., Rev. Sci. Instrum. 90 (2019) 093507

International Atomic Energy Agency

(5) Gaussian progress method (SXR, HX and XUV)

Bayesian inference:

$$p(\boldsymbol{E}_{n}|\boldsymbol{d}_{m},\boldsymbol{\theta}) = \frac{p(\boldsymbol{d}_{m}|\boldsymbol{E}_{n},\boldsymbol{\theta}) \cdot p(\boldsymbol{E}_{n}|\boldsymbol{\theta})}{p(\boldsymbol{d}_{m}|\boldsymbol{\theta})} \sim p(\boldsymbol{d}_{m}|\boldsymbol{E}_{n},\boldsymbol{\theta}) \cdot p(\boldsymbol{E}_{n}|\boldsymbol{\theta})$$
posterior probability likelihood probability prior probability

Gaussian Process modelling:

prior probability $p(\boldsymbol{E}_{n}|\boldsymbol{\theta}) = \frac{1}{(2\pi)^{\frac{n}{2}} |\boldsymbol{\Sigma}_{E}^{prior}|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(\boldsymbol{E}_{n} - \boldsymbol{\mu}_{E}^{prior})^{T} \boldsymbol{\Sigma}_{E}^{prior^{-1}}(\boldsymbol{E}_{n} - \boldsymbol{\mu}_{E}^{prior})\right]$

likelihood probability
$$p(\boldsymbol{d}_{\mathrm{m}}|\boldsymbol{E}_{\mathrm{n}},\boldsymbol{\theta}) = \frac{1}{(2\pi)^{\frac{m}{2}}|\boldsymbol{\Sigma}_{d}|^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(\boldsymbol{R}\cdot\boldsymbol{E}_{\mathrm{n}}-\boldsymbol{d}_{\mathrm{m}})^{T}\boldsymbol{\Sigma}_{d}^{-1}(\boldsymbol{R}\cdot\boldsymbol{E}_{\mathrm{n}}-\boldsymbol{d}_{\mathrm{m}})\right]$$

posterior probability
$$p(\boldsymbol{E}_{n}|\boldsymbol{d}_{m},\boldsymbol{\theta}) \sim \exp \begin{bmatrix} -\frac{1}{2}(\boldsymbol{R}\cdot\boldsymbol{E}_{n}-\boldsymbol{d}_{m})^{T}\boldsymbol{\Sigma}_{d}^{-1}(\boldsymbol{R}\cdot\boldsymbol{E}_{n}-\boldsymbol{d}_{m}) \\ -\frac{1}{2}(\boldsymbol{E}_{n}-\boldsymbol{\mu}_{E}^{prior})^{T}\boldsymbol{\Sigma}_{E}^{prior}^{-1}(\boldsymbol{E}_{n}-\boldsymbol{\mu}_{E}^{prior}) \end{bmatrix}$$

Uncertainty: $\Sigma_E^{post} = \left(R^T \Sigma_d R + \Sigma_E^{prior^{-1}}\right)^{-1}$ (covariance matrix of posterior)

Emissivity inferred:
$$\mu_E^{post} = \mu_E^{prior} + \left(R^T \Sigma_d R + \Sigma_E^{prior^{-1}}\right)^{-1} R^T \Sigma_d^{-1} \left(d_m - R \cdot \mu_E^{prior}\right)$$
 (mean vector of posterior)

(5) Gaussian progress method (SXR, HX and XUV)

Uncertainty analysis & potential to real-time application

MHD-SXR-GPT reconstruction

Y. Chao, L. Xu[#], et al., Chin. Phys. B 29 (2020) 095201

ETRO-XUV-GPT reconstruction

A. D. Liu et al., Nucl. Fusion 60 (2020) 126016

(6) Convolutional Neural Network (CNN)

- CNN only consists of convolutional layers
- The number of parameters is O(l) (*l* is the size of data)
- First three layers: (1,1), (7,7), (7,7) others: (3,3) kernels

(6) Fully Convolutional Neural Network (FCNN)

- FCNN consists of fully convolutional (FC) layers
- The number of parameters is $O(l^2)$ (*l* is the size of data)
- Dropout layers are added after FC for optimization

(6) Visual Geometry Group Net (VGGNet)

- VGGNet consists of FC and convolutional layers
- For convolution layers: (3,3) kernel (every 4 layers, pooling halve and the channel double)
- For FC layers, Dropout layers are added for optimization

(6) Reconstruction results

- Input layer: 92 SXR LOS measurements (with interaction dimension expansion)
- $ReLU = \begin{cases} x, x > 0 \\ 0, x \le 0 \end{cases}$ (Rectified linear unit (ReLU))
- Output layer: 75×50 matrix (with ReLU activation), SXR emissivity map

	CNN	FCNN	VGGNet	GPT
Tests	1000	1000	1000	١
Averaged Maximum Error	29.3%	57.03%	46.96%	١
RMSD	$\begin{array}{c} \textbf{1.49} \\ \times \textbf{10}^{-4} \end{array}$	$\begin{array}{c} \textbf{4.086} \\ \times \ \textbf{10}^{-5} \end{array}$	$\begin{array}{c} \textbf{2.784} \\ \times \textbf{10}^{-5} \end{array}$	١
Execution time	3 ms	25.5 ms	34.9ms	≥ 47s

FCNN

VGGNet

Outline

- I. 2-D Tomographic reconstruction
- II. Tomography methods on EAST
 - Abel method
 - Fourier-Bessel method (SXR)
 - Constrained optimization method (divertor XUV)
 - L-curve Tikhonov method (GEM)
 - Gaussian progress method (SXR, HX and XUV)
 - Neural network method (CNN, FCNN and VGGNet)
- **III.** Applications
 - MHD mode structure analysis (by SVD)
 - Impurity density estimation
- **IV. Summary and Outlook**

MHD mode structure analysis (by SVD)

- $A_{n \times p} = U_{n \times n} \cdot S_{n \times p} \cdot V_{p \times p}^{T}$ ($U_{n \times n}$ and $V_{p \times p}$ are orthogonal, $S_{n \times p}$ represents the weight of each topo/chrono)
- Applications: blurred image recognition/restoration, signal denoising and MHD mode structure analysis.

L. Xu, et al., Chin. Phys. B 21 (2012) 055208

Impurity density estimation

$$\circ \quad \Delta n_w = \Delta n_e / Z_w$$

$$\circ \quad \Delta n_w = \Delta p_w / (L_w n_e)$$

impurity density evolution

 Δn_e measured by point Δp_w reconstructed from XUV Z_w and L_w from ADAS

2-D impurity density distribution

Outline

- I. 2-D Tomographic reconstruction
- II. Tomography methods on EAST
 - Abel method
 - Fourier-Bessel method (SXR)
 - Constrained optimization method (divertor XUV)
 - L-curve Tikhonov method (GEM)
 - Gaussian progress method (SXR, HX and XUV)
 - Neural network method (CNN, FCNN and VGGNet)
- **III.** Applications
 - MHD mode structure analysis (by SVD)
 - Impurity density estimation
- **IV. Summary and Outlook**

Summary

- A variety tomography methods have been developed on EAST (including Fourier-Bessel, constrained optimization, L-curve Tikhonov, Gaussian progress and neural network methods). The pros&cons and the application scope of these methods are analyzed.
- Developed MHD mode structure analysis method based on SVD, combined with tomography can recognize complicated MHD. The impurity density can be obtained by combining XUV and SXR reconstructions.
- The GPT method, which runs fast with uncertainty analysis, has been implemented to HX, SXR and XUV on EAST, supporting MHD and transport research.

Outlook

- Implement the GPT method to more diagnostics (such as neutron imaging diagnostic), and further optimize it for the SXR real-time tomography.
- Realize real-time core heavy impurity density estimation to support EAST H-mode long-pulse operation.
- Develop new tomography method for SXR and XUV (based on machine training and big data analytics, such as neural networks), to avoid the large radial XUV radiation gradient of reconstructions.

Thank you for the attention!

