

Discharge Modeling in EAST Using Bidirectional LSTM

Chenguang Wan^{1,2}

Institute of Plasma Physics, Chinese Academy of Science (ASIPP)
University of Science and Technology of China (USTC)

Email: chenguang.wan@ipp.ac.cn

Wednesday, December 01, 2021

Co-authors: Jiangang Li, Zhi Yu

- Background
- Method
- Results
- Conclusions

- Background
- Method
- Results
- Conclusions

fidelity discharge modeling is still a great

scientific challenge

stage

٠

Wrokflow of integrate modeling by G.L. Falchetto et al 2014 Nucl. Fusion 54 043018

ML discharge modeling

- Divided the tokamak data into three categories: actuator signals (NBI, ICRH, etc), diagnostic signals (W_{mhd} , n_e , etc.), and configuration parameters (position of the poloidal magnetic field (PF) coils, etc.).
- The machine learning discharge modeling can be essentially reduced to a process of mapping actuator (input) signals to diagnostic (output) signals while the configuration parameters are unchanged.

- Background
- Method
- Results
- Conclusions

• Reason

- Discharge modeling is a offline modeling task, so the contextual information is available and equal vital with past information during the experiment proposal stage
- The pervious works only using past information

Signal selection

Signals Physics meanings Output Signals Act. I_p Actual plasma curre

- arpar as	0	
$Act. I_p$	Actual plasma current	A
n_e	Electron density	$10^{19}m^{-3}$
Wmhd	Plasma stored energy	J
V_{loop}	Loop voltage	V
β_n	Normalized beta	dimensionless
β_t	Toroidal beta	dimensionless
β_p	Beta poloidal	dimensionless
κ	Elongation at plasma boundary	dimensionless
l_i	Internal inductance	dimensionless
q_0	q at magnetic axis	dimensionless
q 95	q at 95% flux surface	dimensionless
Feedback Signal		
sycic1	In-vessel coil no.1 current	A
Input Signals		
$\operatorname{Ref} I_p$	Reference plasma current	A
PF	Current of Poloidal field (PF)	A
	coils	
B_{t0}	Toroidal magnetic field	T
LHW	Power of Lower Hybrid Wave	kW
	Current Drive and Heating	
	System	
NBI	Neutral Beam Injection System	Raw signal
ICRH	Ion Cyclotron Resonance	Raw signal
	Heating System	
ECRH/	Electron Cyclotron Resonance	Raw signal
ECCD	Heating/Current Drive System	
GPS	Gas Puffing System	Raw signal
SMBI	Supersonic Molecular Beam	Raw signal
	Injection	
PIS	Pellet Injection System	Raw signal
Ref.	Shape reference	Raw signal
Shape		

Unit

- Output signals
 - Eleven key diagnostic signals can be obtained stably.

• Feedback signal

- According to the magnetic control logic diagram, the in-vessel coil (IC) must be included.
- Input signals
 - Auxiliary heating system, shape reference, magnetic system, etc.

Modeling Procedure

Fig 2. Workflow of the inference

• Feedback signal

Modeling "sycic1" first and then modeling main diagnostic signals.

- Background
- Method
- Results
- Conclusions

The results of bidirectional LSTM (a) and past information model (b)

- The comparison shows the bidirectional LSTM can get better modeling results of V_{loop} than model only using the past information even though not using adaptive resampling and actual plasma current.
- The BiLSTM is more sensitive to the rising edges of the auxiliary heating signals than past information model.

- The similarity of electron density n_e and loop voltage V_{loop} is improved by ~1%, and ~5%.
- The W_{mhd} is good enough only using the bidirectional LSTM is not work. We think the reason is the random variation of input signals and W_{mhd} itself.

Other singles

Ω

2

Δ

Time(s)

6

8

10

13/16

- Background
- Method
- Results
- Conclusions

Conclusions

- Providing reference in the experimental proposal stage.
 - ▶ The electron density n_e , store energy W_{mhd} , loop voltage V_{loop} , actual plasma current I_p , normalized beta β_n , toroidal beta β_t , beta poloidal β_p , elongation at plasma boundary κ , internal inductance l_i , q at magnetic axis q_0 , and q at 95% flux surface q_{95} are predicted in the proposal stage.
 - \succ Except V_{loop} other signals can be considered well modeling.
 - 1-D profile modeling in the next step
- Providing accuracy values of whole discharge process compared to other models.
- Limitations
 - Temporarily unable to predict a discharge curve in real time.
 - Temporarily have not cross-tokamak capacity. (device dependant)
 - Temporarily unable to achieve dimensionless.

https://chgwan.github.io/DataBase/Wan_2021_IAEA_report.pdf https://chgwan.github.io/DataBase/draft_Proof_hi.pdf

Thank You!