Discharge Modeling in EAST Using Bidirectional
LSTM

Chenguang Wan12

1. Institute of Plasma Physics, Chinese Academy of Science (ASIPP)
2. University of Science and Technology of China (USTC)

Email: chenguang.wan@ipp.ac.cn
Wednesday, December 01, 2021

Co-authors: Jiangang Li, Zhi Yu

1/16



Outline

. Background

= Method

= Results

. Conclusions

2/16



Outline

Background

Method

Results

Conclusions

3/16



Discharge modeling

path
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e Getting experiment results in the proposal
stage

e Typical workflow for a physic-driven discharge
modeling is using sophisticated modules that
integrate many physical processes

* Due to the nonlinear, multi-scale, multi-
physics characteristics of tokamak, high-
fidelity discharge modeling is still a great

. t.f. h " Wrokflow of integrate modeling by G.L. Falchetto et al
scientitic cnalienge 2014 Nucl. Fusion 54 043018
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ML discharge modeling

Inner poloidal field coils
(Primary transformer circuit)

Poleidal magnetic field Outer poloidal field coils

(for plasma positioning and shaping)

I n p uts al Toroidal field coils O u t p u ts

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

* Divided the tokamak data into three categories: actuator signals ( NBI, ICRH, etc),
diagnostic signals ( , ,etc.), and configuration parameters (position of the
poloidal magnetic field (PF) coils, etc.).

* The machine learning discharge modeling can be essentially reduced to a process of
mapping actuator (input) signals to diagnostic (output) signals while the configuration
parameters are unchanged. >/16
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BiLSTM Framework
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Fig 4. Architecture of BiLSTM
* Reason
» Discharge modeling is a modeling task, so the

is available and equal vital with past information during the
experiment proposal stage

» The pervious works only using information
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Signal selection

Signals Physics meanings Unit
QOutput Signals
Act. I, Actual plasma current A
Ne Electron density 1019m—3
Wmhd Plasma stored energy J
Vioop Loop voltage Vv
o Normalized beta dimensionless
B Toroidal beta dimensionless
Bp Beta poloidal dimensionless
K Elongation at plasma boundary dimensionless
l; Internal inductance dimensionless
q0 q at magnetic axis dimensionless
Qo5 q at 95% flux surface dimensionless
Feedback Signal
sycicl In-vessel coil no.1 current A
Input Signals
Ref. 1}, Reference plasma current A
PF Current of Poloidal field (PF) A
coils
By Toroidal magnetic field T
LHW Power of Lower Hybrid Wave kW
Current Drive and Heating
System
NBI Neutral Beam Injection System Raw signal
ICRH Ion Cyclotron Resonance Raw signal
Heating System
ECRH/ Electron Cyclotron Resonance Raw signal
ECCD Heating/Current Drive System
GPS Gas Puffing System Raw signal
SMBI Supersonic Molecular Beam Raw signal
Injection
PIS Pellet Injection System Raw signal
Ref. Shape reference Raw signal

Shape

e Qutput signals
» Eleven key diagnostic signals can be obtained
stably.
* Feedback signal
» According to the magnetic control logic
diagram, the in-vessel coil (IC) must be
included.
* Input signals
» Auxiliary heating system, shape reference,
magnetic system, etc.
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Modeling Procedure

Raw Signals

J

Ip ...1kHz

PF ...1kHz

Bm ... TkHz

LHW ...20kHz

NBI ...5kHz

ICRH ...5kHz

sjauuRYD $8 ejoL

ECRH ...50kHz

Sycic1
Trained Model
#1

GPS ...10kHz

SMBI ...10kHz

Sycicl—*

PIS ...10kHz

K/I Raw Signals

/

Ip ...1kHz

Ref.Shape ...10kHz

PF ...1kHz

Feedback signal
» Modeling “sycicl” first and then modeling main diagnostic signals.

BtO . 1kHz

LHW ...20kHz

Main Signals
Trained Model
#2

NBI ...5kHz

ICRH ...5kHz

s|suueyD g [ejoL

ECRH ...50kHz

GPS ...10kHz

SMBI ...10kHz

\\l PIS ...10kHz

Fig 2. Workflow of the inference
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Comparison-Typical shot
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The results of bidirectional LSTM (a) and past information model (b)

* The comparison shows the bidirectional LSTM can get better modeling results of
Vioop than model only using the past information even though
resampling and actual plasma current.

* The BiLSTM is more sensitive to the rising edges of the auxiliary heating signals
than past information model.

using adaptive
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Comparison-Distribution
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* The similarity of electron density  and loop voltage Vo, is improved by ~1%,
and ~5%.

 The W4 is good enough only using the bidirectional LSTM is not work. We
think the reason is the random variation of input signals and W, 4 itself.

12/16



Other singles
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Except for g, the average similarity of other key signals

is greater than 90%. And the similarity distribution is
concentrated above 90%.

value is around zero.

The reason for the low average similarity of g is that its
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Conclusions

* Providing reference in the experimental

» The electron density , store energy , loop voltage , actual plasma
current , normalized beta , toroidal beta , beta poloidal , elongation at
plasma boundary , internal inductance , q at magnetic axis , and g at 95%
flux surface o5 are predicted in the proposal stage.

» Except other signals can be considered well modeling.

» 1-D profile modeling in the next step

* Providing compared to other models.

e Limitations

» Temporarily unable to predict a discharge curve in real time.
» Temporarily have not cross-tokamak capacity. ( )

» Temporarily unable to achieve dimensionless.
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