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Discharge modeling

  

Wrokflow of integrate modeling by G.L. Falchetto et al 
2014 Nucl. Fusion 54 043018

• Getting experiment results in the proposal 
stage

• Typical workflow for a physic-driven discharge 
modeling is using sophisticated modules that 
integrate many physical processes

• Due to the nonlinear, multi-scale, multi-
physics characteristics of tokamak, high-
fidelity discharge modeling is still a great 
scientific challenge
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ML discharge modeling

•  Divided the tokamak data into three categories: actuator signals ( NBI, ICRH, etc), 
diagnostic signals (��ℎ�, ��, etc.), and configuration parameters (position of the 
poloidal magnetic field (PF) coils, etc.). 

• The machine learning discharge modeling can be essentially reduced to a process of 
mapping actuator (input) signals to diagnostic (output) signals while the configuration 
parameters are unchanged.

OutputsInputs
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BiLSTM Framework

Fig 4. Architecture of BiLSTM
• Reason

 Discharge modeling is a offline modeling task, so the contextual 
information is available and equal vital with past information during the 
experiment proposal stage

 The pervious works only using past information 



8/16

Signal selection

• Output signals
 Eleven key diagnostic signals can be obtained 

stably.  
• Feedback signal

 According to the magnetic control logic 
diagram, the in-vessel coil (IC) must be 
included. 

• Input signals
 Auxiliary heating system, shape reference, 

magnetic system, etc.
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Modeling Procedure

Fig 2. Workflow of the inference

• Feedback signal
 Modeling “sycic1” first and then modeling main diagnostic signals.
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Comparison-Typical shot

• The comparison shows the bidirectional LSTM can get better modeling results of 
Vloop than model only using the past information even though not using adaptive 
resampling and actual plasma current. 

• The BiLSTM is more sensitive to the rising edges of the auxiliary heating signals 
than past information model.

 The results of bidirectional LSTM (a) and past information model (b)
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Comparison-Distribution

• The similarity of electron density �� and loop voltage Vloop is improved by ~1%, 
and ~5%. 

• The Wmhd  is good enough only using the bidirectional LSTM is not work. We 
think the reason is the random variation of input signals and Wmhd  itself.
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Other singles

• Except for q0, the average similarity of other key signals 
is greater than 90%. And the similarity distribution is 
concentrated above 90%. 

• The reason for the low average similarity of q0 is that its 
value is around zero.
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Conclusions

• Providing reference in the experimental proposal stage.

 The electron density  ��, store energy ��ℎ�, loop voltage �����, actual plasma 
current ��, normalized beta ��, toroidal beta ��, beta poloidal ��, elongation at 
plasma boundary �, internal inductance ��, q at magnetic axis �0, and q at 95% 
flux surface �95 are predicted in the proposal stage.

 Except �����  other signals can be considered well modeling.

 1-D profile modeling in the next step

• Providing accuracy values of whole discharge process compared to other models.

• Limitations

   Temporarily unable to predict a discharge curve in real time.

   Temporarily  have not cross-tokamak capacity. (device dependant)

   Temporarily unable to achieve dimensionless.
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https://chgwan.github.io/DataBase/Wan_2021_IAEA_report.pdf
https://chgwan.github.io/DataBase/draft_Proof_hi.pdf


