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Real-time prediction and control for fusion plasma events

= |dentify, predict, and control high bandwidth plasma dynamics in real-time
» Extend RT control to fast plasma events and high bandwidth fluctuation diagnostics
» Fluctuation diagnostics with high bandwidth data streams
» High throughput edge ML on real-time platforms at the diagnostic sensor
= Events of interest
= ELM onset events
= Alfven eigenmodes (AE) and AE events
» Confinement mode transitions and sustainment
= Disruption prediction and avoidance

= This talk: Implementation of edge ML with the Beam Emission Spectroscopy
system at DIII-D

» 64 channels (8 X 8 2D configuration) digitized at 1 MHz
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2D BES captures ion-scale turbulence and instabilities DIl-D

at us-scale time resolution

Turbulence imaging and velocimetry

2D BES at DIlI-D
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Created database of >400 ELM events with high bandwidth, 2D BES

NATIONAL FUSION FACILITY

from a variety of DIII-D shots
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Labeled dataset with > 400 ELM events
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Goal: Predict ELM onset with real-time BES data stream (64 channels

at 1 MHz)

Shot 179454

101 —— ch20
Rolling RT signal window — —— Ch 22
* 64 channels 5 - —— Ch 24
« 1MHz
e ~ 32-128 frames n

iy . BES observation

—" of ELM event

Rolling active-ELM prediction — |
on high-throughput RT compute _10 -

41|12 41|14 41|16 41|18 41|20
Time (ms)

D. Smith, IAEATM FDPVA, Nov/Dec 2021 )



Deep neural nets outperform classical ML algorithms for ELM onset

prediction
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Feature model with dense kernels gives best performance for ELM DIN-D

OnSet prediCtiOn NATIONAL FUSION FACILITY
//
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Feature space:
x16 scalars from inner product
between signal window and
feature kernels
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Deep neural nets can accurately predict ELM onset up to 200 us in

advance

Diii-D

NATIONAL FUSION FACILITY
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See more details in talk later today by
Lakshya Malhotra

1.0 - — Ch. 22 - _Prediction

|
r

~— Ground truth = = Buffer limits I
I
— 0.8 - i
o |
e I
=2 06- i
©
c 04 -
2 |
n I
0.2 9 I
I
00- & :
1 1 | 1 I I 1 I
0 200 400 600 800 1000 1200 1400
Time (micro-s)
1.0 - —=———Ch.22 ~—_Prediction
~— Ground truth = = Buffer limits I
_ 08- :
o 1
Q0
© 0.6 - :
— 1
© 04 - i
< 1
o |
n 0.2 - I
0.0 -

1 ] ] ] | I
0 200 400 600 800 1000 1200
Time (micro-s)

D. Smith, IAEATM FDPVA, Nov/Dec 2021

el =X

I
1400

0 ys
forecast

200 ps
forecast



P

O,
Strategies to extend the forecast horizon for ELM onset prediction (W) Dil-bD
N,/

* Longer signal windows for low frequency dynamics
= for example, 128 ps signal windows
» Signal transformation with high bandwidth DSP

= Expand training dataset with marginal cases from unseen data
» Leverage large dataset of unlabeled ELMs
= |mprove coverage of high dimensional data space

64-chan x

64 analog 64 RT digital Sianal 128-frame
signals R RT signals @ 1 MHZ: wir?dow signal window  Raw signal window
digitizer i

buffer (1 frame = 1 ps) FET/DCT

v

Feature-ize | — | MLP | — Prediction

DWT

l )
DSP Y

DNN

DNN must be compatible with high-throughput
RT compute platform like FPGA
* e.g., RNN may not be compatible
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Flexible feature space can feed multiple back-ends for multi-event

prediction

64-chan x 128 us
signal window

Raw signal window

Dili-D

NATIONAL FUSION FACILITY

Multiple back-ends
for multi-event prediction
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— ELM onset prediction
—> HL back-transition prediction
—> AE/EP burst/chirp/avalanche prediction

= Disruption prediction
)
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Develop a flexible feature space by training with
composite loss function or iterate over MLP back-ends

RT edge ML predictions can be implemented as new signals
for feedback control within the RT plasma control system (PCS)
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Summary

= |dentify, predict, and control high bandwidth plasma dynamics in real-time
» Extend RT control to fast plasma events and high bandwidth fluctuation diagnostics
= Fluctuation diagnostics with high bandwidth data streams
= High throughput edge ML on real-time platforms at the diagnostic sensor
= Events of interest
= ELM onset events
= Alfven eigenmodes (AE) and AE events
» Confinement mode transitions and sustainment
= Disruption prediction and avoidance

= This talk: Implementation of edge ML with the Beam Emission Spectroscopy
system at DIII-D

» 64 channels (8 X 8 2D configuration) digitized at 1 MHz
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