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Modeling of nuclear fusion plasma diagnostics

• Few key plasma parameters:
• Electron and ion temperature (𝑇𝑒/𝑇𝑖) 

• Particle density (𝑛𝑒)

• Impurity concentration: effective charge Zeff

• Inferred from observations of several different processes with plasma diagnostics:
• Thomson scattering → 𝑇𝑒 , 𝑛𝑒
• Interferometry → 𝑛𝑒
• Electron cyclotron emission → 𝑇𝑒
• Several types of spectroscopy (X-ray, visible, etc.) → 𝑇𝑒 , 𝑇𝑖 , 𝑍eff…
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Inverse problem
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• Starting from data : one inverse function for each diagnostic observation.
• 𝑓𝑖

−1 𝑑𝑖 → 𝑝

• How to merge different observations of same p from different d?

• Uncertainties estimation required to compare different results

• Conventional statistics: use estimators to infer underlying distribution. Assumptions ‘hidden’ in the 
choice of the estimators.

𝑑: Thomson scattering, interferometer, spectroscopy

p: 𝑇𝑒 , 𝑛𝑒 , 𝑇𝑖 , …



Bayesian inference and modeling 
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• Definition of a model explaining the data.
• Forward/generative models: predict diagnostic data from plasma parameter 𝑓 𝑝 → 𝑑

• Limited explanatory power.
• Modelling uncertainties: probability distributions (prior, likelihood, posteriors)

• One single rule to infer the posterior -> estimate uncertainties: Bayes formula.

• One model of the plasma.



• Model ‘m’ of a plasma process can predict observations ‘d’ (data)

• Probability distributions p: uncertainties in model assumptions and 

predictions

• Bayes rule:

𝑝 𝑚 𝑑 =
𝑝 𝑑 𝑚 𝑝 𝑚

𝑝 𝑑
=
𝑝(𝑑,𝑚)

𝑝(𝑑)
∝ 𝑝(𝑑,𝑚)

• Joint distribution 𝑝(𝑑,𝑚): landscape of all possible assumptions and 

predictions

Bayesian inference and modeling 

likelihood prior joint distribution

posterior
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The Minerva Bayesian modeling framework

• Common computational implementation across different plasma physics models

• Graphical models express probabilistic relations according to Bayes rule

• Generalization of inference algorithms
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Simplified Bayesian graphical model

• Free parameters m1 and m2

• Observation sources D1 and D2



Graph of the electron cyclotron emission diagnostic at W7-X 
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Bayesian inference within the Minerva framework

• Complex models of multiple diagnostic processes computationally demanding inference 

• Tens of minutes / hours for one single measurement (one measurement record)

• Posterior inference: hard to sample and/or optimize

• Historical approaches to Bayesian inference acceleration: variational Bayes, etc.

• Deep learning to approximate Bayesian inference?
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Deep learning of Bayesian inference
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• Bayesian models define statistical relations among quantities: 𝑝 𝑑,𝑚

• Deep learning models learn statistical relations in the training data 𝑑𝑡, 𝑚𝑡

• Training data sampled from 𝑑𝑡, 𝑚𝑡 ~ 𝑝 𝑑,𝑚

• Deep learning of approximate conditionals induced by the Bayesian model 

• ‘Inverse model’:                            𝑝 𝑚𝑡 𝑑𝑡 ~ 𝑝 𝑚 𝑑

• ‘Generative model’:                      𝑝 𝑑𝑡 𝑚𝑡 ~ 𝑝 𝑑 𝑚

• Joint probability distribution:        𝑝 𝑑𝑡, 𝑚𝑡 ~ 𝑝(𝑑,𝑚)



One framework, multiple inference approaches
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• Modeling: unified generative Bayesian models of plasma physics processes 

• DL model is not about learning new physics (at this stage, at least):

• Physicist implements Bayesian physics model into the framework

• DL model learns to approximate inference under given modeling assumptions 

• Bayesian models can be used to generate training data to train DL models

• DL models can learn approximated version of Bayesian inference

• Bayesian inference can be made faster and scalable within one environment, when required



Deep learning of Bayesian model probability distributions
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𝑓

𝑚 ∼ 𝑝(𝑚)

𝑑 ∼ 𝑝(𝑑|𝑚)

1. Given a (generative) Bayesian model

2. Use it to train the network to learn the 
inverse function

3. Sample model parameters 𝑚 and
predictions 𝑑 from the joint distribution of the 
model:

4. Network learns an approximate MAP:
• MSE error function: mean of Gaussian posterior

• From training data distribution 𝑝(𝑚𝑡|𝑑𝑡)

𝑑𝑡, 𝑚𝑡 ∼ 𝑝 𝑑,𝑚 = 𝑝 𝑑 𝑚 𝑝(𝑚)

𝑑 → 𝑚



Artificial neural network (ANN) approximate Bayesian inference

1. Sample model parameters 𝑚 and
predictions 𝑑 from the joint distribution of the 
model:

2. Network learns the joint probability 
distribution:

𝑚𝑡 , 𝑑𝑡 → 𝑝(𝑚, 𝑑)

𝑑𝑡, 𝑚𝑡 ∼ 𝑝 𝑑,𝑚 = 𝑝 𝑑 𝑚 𝑝(𝑚)
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𝑝(𝑚, 𝑑)𝑓

𝑚 ∼ 𝑝(𝑚)

𝑑 ∼ 𝑝(𝑑|𝑚)



Artificial neural network (ANN) approximate Bayesian inference

• Training data: only synthetic, generated with the Bayesian model according to their distributions

• Evaluation on experimental measurements

• Inference acceleration can be significant: 

from 10 mins to 100 μs → 106 acceleration

• Leveraging on a shared computational implementation (Minerva framework) we can automate:
• Creation of training data

• Training of machine learning model (ML libraries: e.g., TensorFlow)

• Deployment and use of machine learning model for fast inference

• How to choose machine learning model?
• Regression problems: simple is better, and enough (MLP, CNN).

• Time series: RNN.

• Hyperparameters can be optimized: TensorFlow, AutoML, etc.
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Inference of ion and electron temperature at W7-X 

• X-ray imaging crystal spectrometer (XICS) 
diagnostic: X-rays are emitted in the 
interaction between injected Argon ions and 
plasma particles

02.12.2021 A. Pavone et al. 15

Spectral resolution

S
pa

tia
l r

es
ol

ut
io

n

Observations: 2D images of X-ray spectra across 

several lines of sight

Ion temperature 𝑇𝑖 : Doppler broadening

Electron temperature 𝑇𝑒: line intensity



Convolutional neural network for 2D X-ray spectra
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DL uncertainties: Bayesian neural networks

• Laplace approximation of weight posteriors:
• Analytical solution of 𝑝(𝑤|𝑡)

• Depending on the Hessian of the weight matrix

• Sampling from committee of networks

• Distribution of weights

• Distribution of training local optima

𝑇𝑒 (keV) 𝑇𝑖 (keV)

𝜌eff 𝜌eff
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𝜎𝑡
2 =

1

𝛽
+ 𝐠𝑇 𝐀−1𝐠 𝐠 = 𝛻𝐰𝑦 ቚ

𝑀𝑃
𝐀 = 𝛻𝛻𝐰𝑆 ቚ

𝑀𝑃

𝑆: training loss function

y: network output

MCMC



Inference of edge electron density at the JET tokamak

plasma

Li beam

plasma

JET plasma cross section • Injection of Lithium atoms in the plasma

• Excitation through collisions with plasma electrons

• Observations: Li emission spectra

• Plasma parameter: (edge) electron density

𝑛𝑒

Multi-state collisional 

radiative model

Li line 

intensity
Measuring Li line intensity along 40 cm distance from 

the top: 𝑛𝑒 is inferred at these edge positions
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MC dropout training for online uncertainty estimation

• Reconstruction of observed line intensities

• Error (prediction 𝑝 – measurements 𝑚) across 
several pulses and plasma conditions: < 20%

• Uncertainties: MC dropout

• Variational inference of weight posterior

• Minimization of training loss function (mean 
squared error) = minimization of Kullback-Leibler
divergence 𝐾𝐿(𝑞|𝑝)

𝐾𝐿 𝑞 𝑝 = ׬ 𝑞 𝑤 log
𝑝 𝑤

𝑞 𝑤
𝑑𝑤
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Units/weights dropped 

with probability 𝑞 at 

training and inference

MCMC

MCMC



• Single line-of-sight spectrometer collecting plasma 

emission

• bremsstrahlung background radiation (≈ 630 −
640 nm) estimated from a line emission-free region 

of the observed spectrum 

Inference of joint distribution of a Zeff-bremsstrahlung model at 
W7-X

line emission-free region
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I 𝜆, 𝒙 ∝
𝑍eff𝑛𝑒
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√𝑇𝑒



Inference of joint distribution of a Zeff-bremsstrahlung model at 
W7-X

• Training input: 𝑍eff, 𝐼𝜆

• Training target: 𝑝 𝑍eff, 𝐼𝜆 = 𝑝 𝑍eff 𝑝(𝐼𝜆|𝑍eff; 𝑛𝑒, 𝑇𝑒)

• Reconstruction of posterior 𝑝 𝑍eff|𝐼𝜆
∗ from experimental measurement of 𝐼𝜆

∗

plasma shot # 20180807.015
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• Mean relative error below 0.2 for 
most casesMCMC



Conclusions

Bayes theory, NN approximate inference and shared computational modeling framework:

• Unified modeling of plasma physics processes to predict observations

• Training on virtual Bayesian models -> possible generalization to different devices/systems 
before experimental data are available

• Computationally sustainable and scalable inference independently of model complexity (≈100 μs)

• Deep learning model uncertainties computable at inference time

• Real time applications possible

• DL based fast approximate inference immediately generalized for any integrated model

• Acceleration of posterior sampling (MCMC/DL-based variational inference)

• Physics constraints into DL model (with forward model decoding)
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