

Real-time disruption prediction in the plasma control system of HL-2A based on deep learning

Zongyu Yang Southwestern Institute of Physics Department of Engineering Physics, Tsinghua University

- Background
- ➢ Offline algorithm in HL-2A
- Real-time implementation
- > Testing result in PCS without mitigation
- > Testing result in PCS with mitigation
- Future works

- Background
- ➢ Offline algorithm in HL-2A
- Real-time implementation
- > Testing result in PCS without mitigation
- ➤ Testing result in PCS with mitigation
- Future works

Background

- Disruption \rightarrow 3 main harmful effects:
 - ➢ Thermal quench(TQ)
 - Current quench (CQ)
 - Runaway electrons(RE)
- The solution is:
 - Avoidance
 - $\blacktriangleright \quad \text{Prediction} \rightarrow \text{Machine learning algorithm}$
 - Mitigation
- Many algorithms are developed, but:
 - Cross-tokamak prediction
 - Real-time implementation
 - Interpretable algorithm

Background

- Some ML-based algorithm have been implemented in real-time environment
 - APODIS: based on Support Vector Machine, implemented in JET
 - > DPRF: based on Random Forest, implemented in DIII-D and EAST
 - How about the real-time implementation of deep learning-based algorithms?

- Difficulties
 - ▷ Complex data: low sample rate scalars \rightarrow high sample rate 0D/1D/2D data
 - Complex software: interaction between python, C and deep learning framework
 - Complex hardware: calculation on GPUs

- Background
- ➢ Offline algorithm in HL-2A
- Real-time implementation
- > Testing result in PCS without mitigation
- > Testing result in PCS with mitigation
- Future works

Deep learning model

• Input

- ✓ 25 channels
- ✓ Sample rate: 1/10/100kHz (all resampled to 100kHz)
- ✓ Window length: 20ms
- Preprocessing: mean-std-truncate
- Model structure
 - Convolutional layers
 - ✓ 1.5-D convolutional layers
 - Long short term memory layers
 - Fully connected layers
- Output
 - ✓ Disruptivity: 0~1

Testing Results

THE OWNER WHEN THE

- Background
- ➢ Offline algorithm in HL-2A
- Real-time implementation
- > Testing result in PCS without mitigation
- > Testing result in PCS with mitigation
- Future works

Input data provided by PCS

- Some input channels can't be real-timely obtained: EFIT data
- Local resources in PCS might be helpful

	Sample rate	Physical Meaning
IP_001~IP_009	1kHz	Plasma current measured by 9 Rokovski coils
Boh_EM	1kHz	Intensity of ohmic field
Bt_EM	1kHz	Intensity of toroidal field
Bv_EM	1kHz	Intensity of vertical field
MP1_EM	1kHz	Intensity of multipole field
MP2_EM	1kHz	Intensity of multipole field
Diam_TX_4	1kHz	Amplitude of diamagnetic measured by concentric coils
Density	1kHz	Density of electrons at the center of plasma
Vloop	1kHz	Loop voltage
Hx_1	1kHz	Power of hard-x-ray (0–5 MeV)
Hx_2	1kHz	Power of hard-x-ray (5–10 MeV)
BOLU10	1kHz	Power of radiation measured by the 10 th channel of upper bolometer array
Mpol_04	10kHz	A pair of toroidal probes located at symmetric positions
Mpol_13	10kHz	
Npol_04	10kHz	A pair of poloidal probes located at symmetric positions
Npol_09	10kHz	
I_Div_Imp2	10kHz	D-α ray at divertor
SX52	10kHz	Power of soft-x-ray, 52 th channel
FDh	1kHz	Horizontal displacement calculated by PCS
FDv	1kHz	Vertical displacement calculated by PCS

Accelerating

- Offline model takes 17ms to analyze an input slice, too long to serve in plasma control system, which calls for less than 1ms per slice.
- Reduce the model: $17ms \rightarrow 2ms$
 - ✓ Input sample rate: $100 \text{kHz} \rightarrow 10 \text{kHz}$
 - ✓ Model structure: mainly CNN → mainly RNN
- Using inference framework: $2ms \rightarrow 0.3ms$
 - ✓ TFLite: inference framework for Tensorflow models
- Cost of accuracies 😔
 - ✓ TPR0.922/TNR0.975 → TPR0.880/TNR0.879

Embedded into the PCS

- Software works
 - Cross language interaction between
 PCS and deep learning model
 - Real-time analysis of diagnostic data

- Hardware works
 - Updating the acquisition system
 - Connecting PCS to the Massive Gas
 Injection system

- Background
- ➢ Offline algorithm in HL-2A
- Real-time implementation
- > Testing result in PCS without mitigation
- > Testing result in PCS with mitigation
- Future works

Accuracies

- Testing set: Shot Nos. 38650-39347 in HL-2A
 - ➢ TPR:0.958, TNR:0.775
 - > 32/142 false alarms, 10/240 missed alarms
 - False alarms are mainly triggered by minor disruptions/internal disruptions/noise from data acquisition system

Advance time

- For SMBI, 91.3% of the disruptions can be timely mitigated
- For MGI, 81.5% of the disruptions can be timely mitigated

- ➢ Background
- ➢ Offline algorithm in HL-2A
- Real-time implementation
- > Testing result in PCS without mitigation
- > Testing result in PCS with mitigation
- Future works

- Vertical displacement induced disruption, mitigated by SMBI
 - Trigger signal was sent at 1047ms
 - Plasma density started to increase at 1050ms
 - Mitigated disruption started at 1051ms

101111

- Vertical displacement induced disruption, mitigated by SMBI
 - Trigger signal was sent at 1047ms
 - Plasma density started to increase at 1050ms

111111

- Cooling of core plasma induced disruption, mitigated by MGI
 - Trigger signal was sent at 704ms
 - Plasma density started to increase at 714ms
 - Mitigated disruption started at 716ms

1111111

- Cooling of core plasma induced disruption, mitigated by MGI
 - Trigger signal was sent at 704ms
 - Plasma density started to increase at 715ms
 - Mitigated disruption started at 716ms

- Background
- ➢ Offline algorithm in HL-2A
- Real-time implementation
- > Testing result in PCS without mitigation
- > Testing result in PCS with mitigation
- Future works

Future works

- Deep learning models works well in PCS
- Future works
 - Real-time implementation: preliminarily solved in this research, keep optimizing
 - ➢ Interpretable algorithm: preliminarily answered by [2], keep optimizing
 - Cross-tokamak prediction: coming soon
- Related works

[1] Offline algorithm in HL-2A, *Zongyu Yang et al*, *Nuclear Fusion* 60, 016017
[2] Model optimization and interpretation, *Zongyu Yang et al*, *Nuclear Fusion* 61, 126042

Thanks!

100000