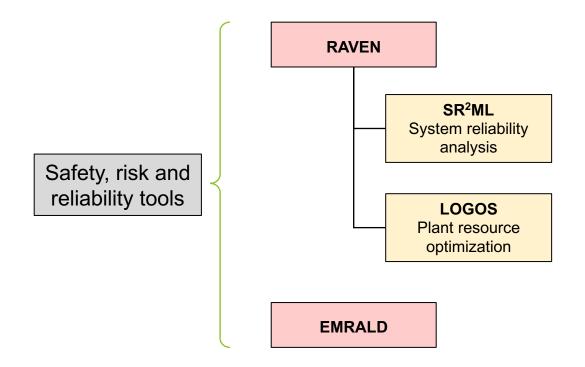
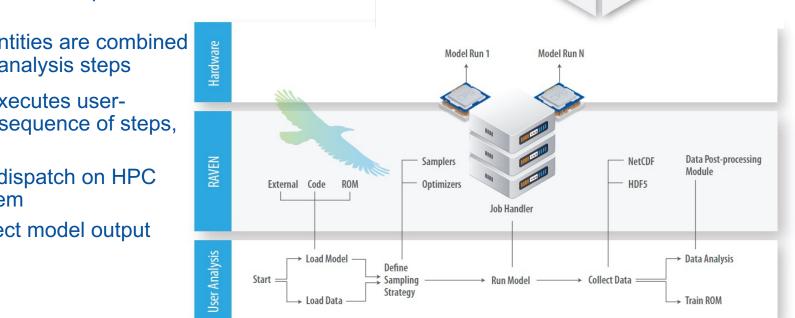
June 22nd, 2022


Diego Mandelli R&D Scientist

OPEN-SOURCING SAFETY, RISK, AND RELIABILITY TOOLS


About This Talk

 Goal: provide an overview of INL open-source tools designed for safety, risk and reliability purposes

RAVEN: Overview

- RAVEN: multi-purpose stochastic platform
- **Methods/capabilities**
 - Uncertainty propagation
 - Machine learning
 - Optimization
 - Data analysis
- Language: designed to apply these methods and capabilities to user-provided simulation models

Model

Model

Calibration

Sensitivity

analysis and

uncertainty

quantification

Optimization

Unsupervised

Adaptive and

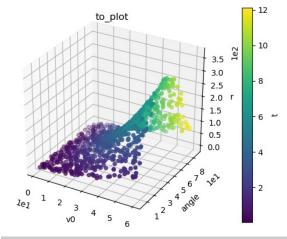
weighted

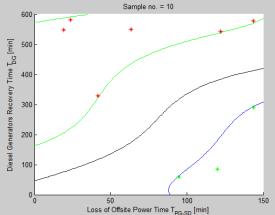
sampling

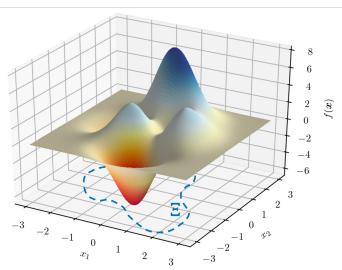
Code

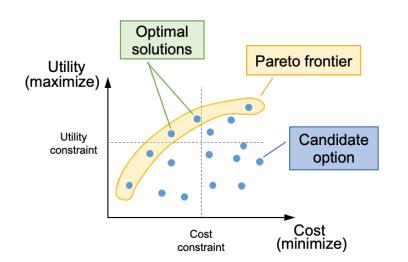
interfacing

and model

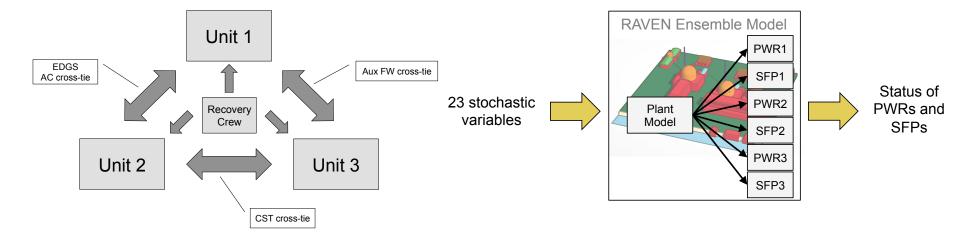

linking


learning


- **RAVEN** entities are combined to create analysis steps
- **RAVEN** executes userspecified sequence of steps, e.g.
 - Job dispatch on HPC system
 - Collect model output data

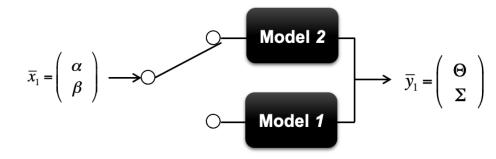

RAVEN: Model Sampling

- Generate data by evaluating model response according to a specific sampling scheme
- Samplers
 - Forwards samplers (e.g., Monte-Carlo, grid, ensemble sampling, stratified)
 - Adaptive samplers including Markov Chain Monte Carlo (MCMC)
- **Optimizers:** Gradient descent, genetic algorithms, Pareto frontier analysis
 - Reliability application: determine optimal reliability values for system components



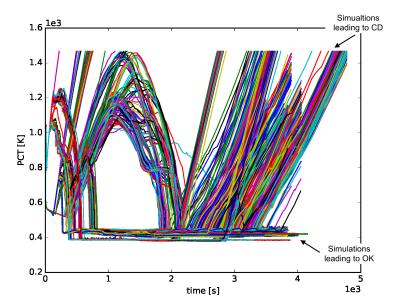
RAVEN: Model Architecture

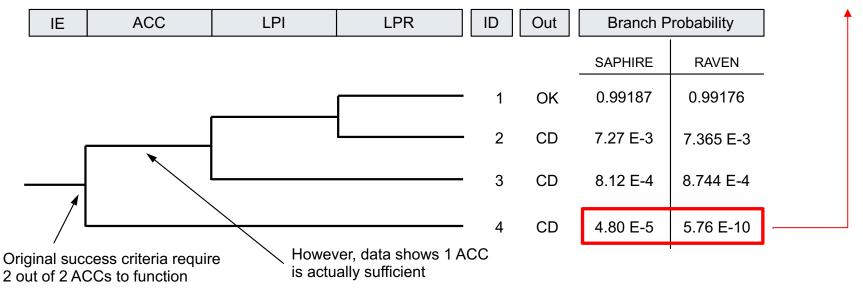
• Ensemble Models: link models together in a linear fashion (i.e., parallel, serial)


$$\overline{x}_{1} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \longrightarrow \text{Model } 1 \longrightarrow \overline{y}_{1} = \begin{pmatrix} \Theta \\ \Sigma \end{pmatrix} \xrightarrow{\overline{x}_{2}} = \begin{pmatrix} \Theta \\ \delta \end{pmatrix} \longrightarrow \text{Model } 2 \longrightarrow \overline{y}_{2} = \begin{pmatrix} \Phi \\ \Pi \end{pmatrix}$$
$$\overline{x}_{3} = \begin{pmatrix} \Theta \\ \mu \end{pmatrix} \longrightarrow \text{Model } 3 \longrightarrow \overline{y}_{3} = \begin{pmatrix} \Psi \\ \Gamma \end{pmatrix}$$

• Example: Dynamic probabilistic risk analysis of multi-unit power plant

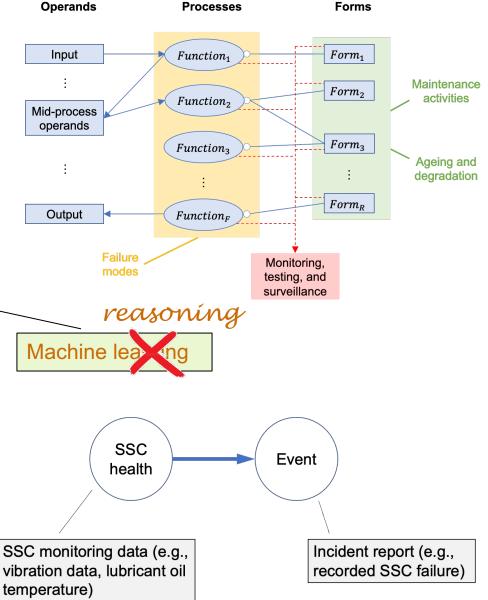
RAVEN: Model Architecture


- Logical/Hybrid Models: the execution of a model is dictated by a provided decision function, e.g.
 - System logic controlled
 - Choice between high vs. low fidelity models
- Example: automatic model selection for a PWR SBO sequence using RELAP5-3D and SVM surrogate model
 - Out of the 1000 Monte Carlo samples
 - 200 were run using the RELAP5-3D model
 - Computational time reduction of 800*4 = 3200 CPU-hrs



SR²ML: Dynamic PRA

- **Goal:** Tools and methods to perform safety risk and reliability analyses
- **Application:** Models to perform simulation-based risk modeling (dynamic PRA)
 - Integration of classical PRA models to simulation models
 - Compare classical and dynamic PRA results
 - Integration of dynamic PRA data into classical PRA models



SR²ML: ER Data Analytics

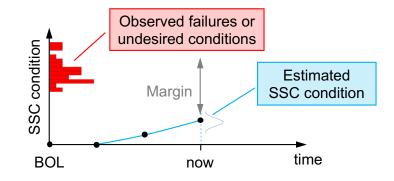
- Data elements: Heterogenous plant ER data format: text (events, logs) and numeric
- Our work: Find causal patterns from data
 - We need to use data along with models
- System engineer view: MBSE representation of a component (e.g., OPM diagrams)
 - Understand "what a text is talking about"
 - Emulate system engineer knowledge about SSC/system architecture
- **Data scientist view:** natural language processing (NLP) methods
 - Discover causal relationship between data elements
 - Integrate numeric and text data

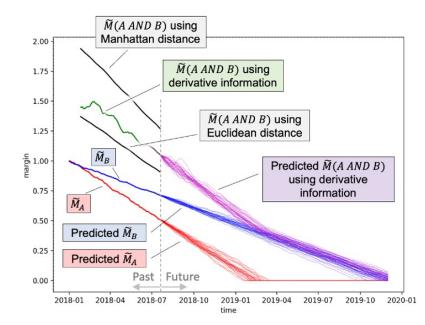
Create a story out of data

SR²ML: Reliability Modeling

- Reliability modeling based on margin rather than
 probability of failure
- Margin: "distance" between actual status and an undesired status for a component
- This change implies a redefinition of risk

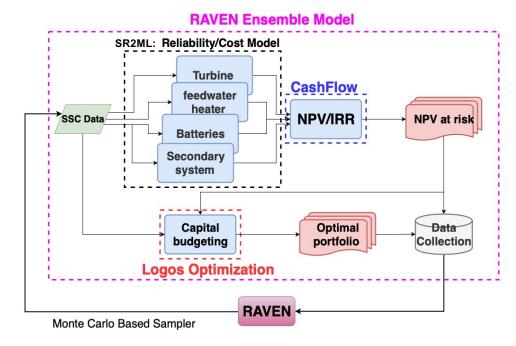
Regulatory definition


What can go wrong What are its consequences **How likely it is**



System engineer definition What can go wrong

What are its consequences **How distant it is**

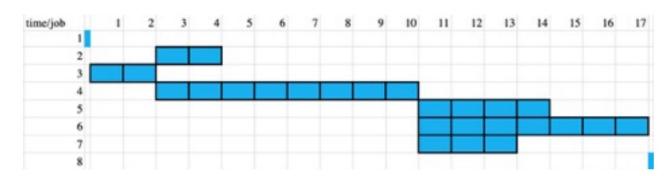

- Margin is defined over actual and past ER data
 - Direct integration of ER data
- Margin values change with time
 - New SSC condition data are observed
 - ER operations are performed
- Margin values can be propagated through system/plant reliability models
 - Solved using distance-based operators
 - Quantitative measure of system health
 - Health importance of components

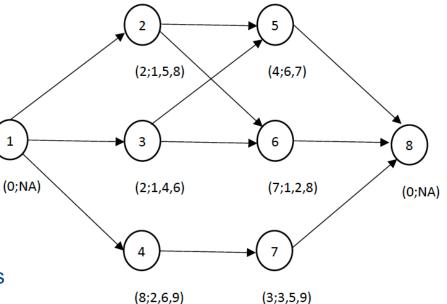
LOGOS: Simulation-Based Optimization

- **Goal:** provide plant resources optimization tools
 - Integration of reliability and economic factors into the decision process
- Models interfaced to RAVEN (for model-based optimization)
 - Determine optimal set of maintenance activities
 - Evaluate optimal alternatives for maintenance posture
 - Determine system optimal monitoring configuration
- Stand-alone tools (for data-based optimization)
 - Deterministic budgeting
 - Stochastic budgeting
 - Risk-based budgeting
 - Distributionally robust budgeting
 - Job scheduling optimization

LOGOS: Project Prioritization

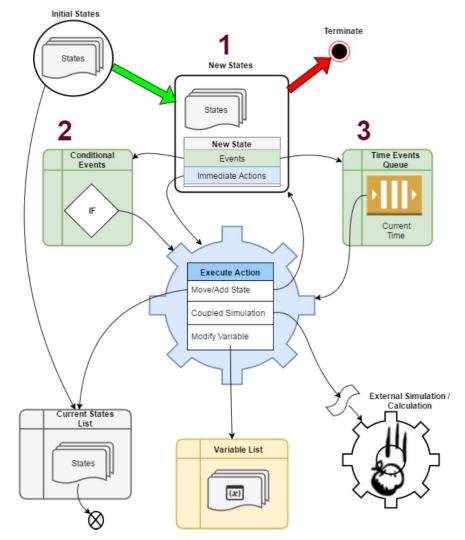
- Goal: Select optimal set of projects and actuation schedule that maximizes overall NPV
- Input data: Candidate projects
 - Options for each project (timing, duration, and costs)
 - Budget constraints per year and per resource (e.g., capital funds, O&M funds)
 - Consequences of stochastic events (e.g., SSC failure)

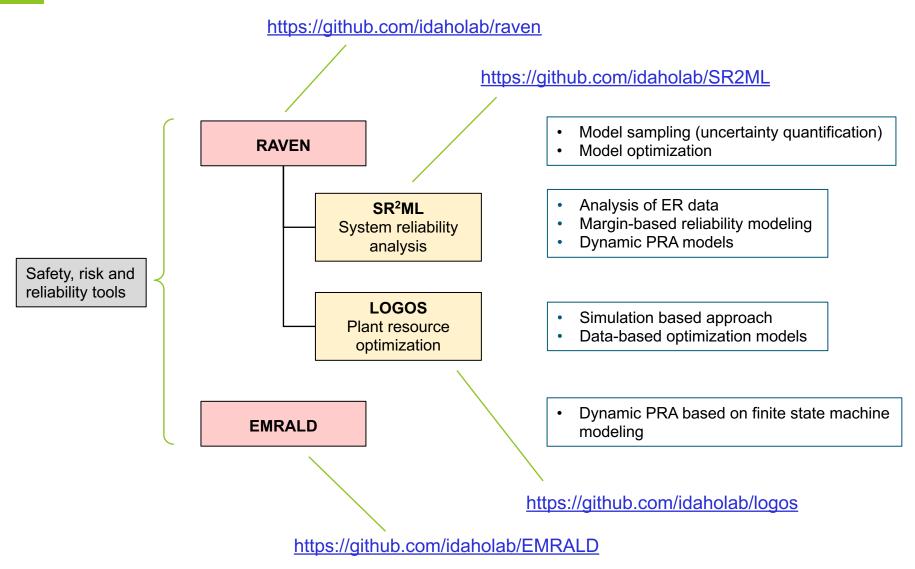

	T1	T2	T3	T4	T5	T6	MTTR	Power	Failure	
Component- scenario	\$ 50K	\$ 90K	\$ 90K	\$ 90K	\$ 70K	\$ 40K	[h]	Loss	Probability	Risk
M1-A	\$40K						10	10%	0.2	0.2
M1-B		\$ 40K					10	10%	0.25	0.25
M1-C			\$40K				10	10%	0.3	0.3
M1-DontDo							10	10%	1	1


• Output data: Selected projects and prioritization and optimal project schedule

	T1	T2	T3	T4	T5	T6	Risk	
	\$ 50K	\$ 90K	\$ 90K	\$90K	\$ 70K	\$40K	KISK	
M1-B		\$40K					0.25	
M2-B			\$ 50K				0.36	
M3-B				\$35K			0.18	
M4-A				\$40K			0.18	
M5-A		\$45K					0.2	
M6-A	\$25K						0.168	
M7-A			\$ 30K				0.72	
Total	\$25K	\$85K	\$80K	\$75K	0	0	2.058	

LOGOS: Schedule Optimization


- Applications
 - Scheduling of maintenance and surveillance activities
 - Scheduling of outage activities
- Input data
 - Crews (skill set, availability)
 - Tasks (duration, dependencies, skills)
- **Objective:** minimize time to perform all tasks
- Methods: Mixed integer linear optimization
- Output data
 - Task schedule assigned to each crew



EMRALD

- Event Modeling Risk Assessment using Linked Diagrams (EMRALD)
- Dynamic PRA model based on a threephased discrete event simulation
- To begin, add initial start states to Current and New States List
 - 1. While there are States in the New Sates list, for each State:
 - Add the Events to the Time Queue or Conditional List
 - Execute any Immediate Actions
 - 2. If any Conditional Events criteria is met
 - Execute that events action
 - (Go to Step 1)
 - 3. Jump to the next chronological event
 - Process that event's actions.
 - (Go to Step 1)

Conclusions

