A Framework for Multi-physics Modelling, Design Optimization and Uncertainty Quantification of Fast Spectrum Liquid Fuel Molten Salt Reactors

S. Bhaskar, D. Holler, M. Avramova, **K. Ivanov** North Carolina State University

IAEA Technical Meeting on the Development and Application of Open-Source Modelling and Simulation Tools for Nuclear Reactors

> Milan, Italy June 21, 2022

- This study focuses on Liquid Fuel Molten Salt Reactors (LFMSR)
- LFMSRs do have their fair share of challenges:
 - High temperatures
 - Corrosion
 - Liquid fuel inventory

- This work adopts many aspects from the Euratom Evaluation and Viability of Liquid Fuel Fast Reactor System Project (EVOL) [1]
 - Under EVOL project umbrella, several codes were developed and most of them were based on OpenFOAM C++ code library [2]
 - Similar applications of OpenFOAM can be found in [3-5]

- Optimized core geometry designs are available but lack rigorous studies
- The optimized core geometry (available in literature) is based on one factor i.e. hot spots
- Extensive studies are needed to optimize performance of major systems
- These analyses must consider the multi-physics design impacts on:
 - Plant performance
 - Pump position
 - Placement and sizing of heat exchangers

- Strong coupling between different physics makes the uncertainty analysis more challenging
- Dependencies and interactions between input and non-linear input-output relations add to complexity
- An acceptable framework requires statistical tool(s) that can:
 - Propagate input uncertainties
 - Analyse quantities of interest (QoI) using appropriate statistical tools
 - DAKOTA is utilized in this work

Objectives

- Identify and model the multi-physics phenomena that impose potential challenges:
 - Structural material temperature limits
- Develop high-fidelity CFD models of LFMSRs
- Perform uncertainty propagation, sensitivity analysis, and design optimization studies of the LFMSR system

• General framework for multi-physics UQ

- This work uses GeN-Foam (General Nuclear Field Operation And Manipulation) for multi-physics modeling [7]
 - Based on Open-source Field Operation And Manipulation (OpenFOAM) C++ library
 - Capable of modeling both light water reactors and liquid fueled systems
 - Compatible with structured or unstructured meshes to model a geometry

- Thermal-hydraulics sub-solver uses modified Reynolds-Averaged Navier-Stokes (RANS) equations
- The solver can evaluate both RANS and porous medium RANS equations
 - This work used the standard k-epsilon turbulence model with porous media approximation
 - Heat exchanger and pump are modeled as porous regions
- Main equations solved through a merged PISO-SIMPLE (PIMPLE) pressure-based algorithm
- More information can be found in [7]

Methods

• Neutronics sub-solver is based on multigroup diffusion equation

$$\frac{1}{v_g}\frac{\partial \varphi_g}{\partial t} = \nabla \cdot D_g \nabla \varphi_g - \Sigma_{r_g} \varphi_g + \sum_{g' \neq g}^G \Sigma_{g' \rightarrow g} \varphi_{g'} + \chi_{p,g} \big(1 - \beta_{eff,t}\big) \sum_{g'=1}^G \nu \Sigma_{f,g'} \varphi_{g'} + \sum_k^{G_d} \chi_{d,g}^k \lambda_k C_k$$

• The delayed neutrons precursors equation is given by:

$$\frac{\partial C_{k}}{\partial t} + \nabla \cdot (u_{D}C_{k}) + \nabla \underline{\cdot} \frac{\nu_{t}}{Sc_{t}} \nabla C_{k} = \frac{\beta_{eff,k} \sum_{j} \nu \Sigma_{f,j} \varphi_{j}}{k_{eff}} - \lambda_{k}C_{k}$$

Methods

- The LFMSR concept is a 3000 MW_{th} reactor:
 - Fast-spectrum breeder reactor with a large negative power coefficient
 - The liquid salt serves as both fuel and coolant
 - Reduced reprocessing requirements and better reactor breeding ratios are possible with this type of reactor [6]
 - All model inputs are adopted and derived from this design

Adopted from [1]

S. Bhaskar et al.

- Gen-Foam thermal-hydraulic conditions
 - Fuel salt: 1 · PuCl₃ 8 · UCl₃ 10 · NaCl
 - Inlet salt velocity was 1 m/s, inlet temperature of 650 K
 - Model was evaluated at steady conditions

PARAMETER	VALUE	UNITS
Density	4200	kg/m³
Specific Heat Capacity	950	J/kg-K
Dynamic Viscosity	0.00217	Pa-s
Thermal Expansion Coefficient	0.000464	1/K
Thermal Conductivity	0.7	W/m-K

- Gen-Foam neutronics conditions
 - Vacuum boundaries were set at the walls
 - Reflective boundary set along the symmetry line, inlet, and outlet
 - Serpent 2.1.32 was used to generate the parameterized cross sections
 - MATLAB script converts cross sections into a format readable by GeN-Foam
 - GeN-Foam uses an interpolation method to calculate the cross sections between different physical states
 - Model was evaluated in steady conditions

- Multi-physics UQ framework was applied to temperature limits of LFMSR primary loop components
 - Proposed materials are Stainless Steel (SS) 316L and Hastelloy-N

PARAMETER	VALUE	UNITS
Salt Melting Temperature	739	K
Salt Boiling Temperature	1673	K
Maximum Hastelloy N Operational Temperature	990	K
Maximum SS 316L Operational Temperature	1658	K

- Two power levels (25, 50 MW_{th}), three heat transfer coefficients (1, 2.5, 5 kW/m²-K) and three pump heads (5, 10, 20 kN/m) were evaluated with a 2D GeN-Foam model
- Case indices were numbered according to combination of input parameters (see table to right)

INDEX	POWER (MW)	HTC (kW/m²-K)	PUMP HEAD (kN/m)
1	25	1	5
2	25	1	10
3	25	1	20
4	25	2.5	5
5	25	2.5	10
6	25	2.5	20
7	25	5	5
8	25	5	10
9	25	5	20
10	50	5	5
11	50	5	20
12	50	2.5	5
13	50	2.5	10
14	50	2.5	20
15	50	1	5
16	50	1	10
17	50	1	20

- DAKOTA is the Design and Analysis toolKit for Optimization and Terascale Applications [8]
- Performs statistical analysis on code output and subsequently adjusts code input
- Supports several sampling techniques such as Monte Carlo (MC) sampling, Latin Hypercube Sampling (LHS), and Grid Sampling

- GeN-Foam was coupled to DAKOTA and the inputs were varied between 2-20% (see table)
- All variables were given a normal distribution

PARAMETER	VARIATION
Density	2%
Specific Heat Capacity	20%
Dynamic Viscosity	10%
Thermal Expansion Coefficient	15%
Heat Transfer Coefficient	20%
Pump Head	20%

Results and Discussion

- Indices 2, 3, 5, 6, 9, 10, 13, and 14 fall within the set limits for SS 316L
- The SS 316L material has a much higher operating temperature limit and allows for more flexibility

Results and Discussion

- Only indices 5 and 9 fall within the set limits for Hastelloy-N
- Hastelloy-N has a lower maximum operating temperature

Results and Discussion

- Only two conditions (indices) fell within operating temperature limits for both SS 316L and Hastelloy-N
 - 25 MW_{th}, 2.5 kW/m²-K, 10 kN/m
 - 25 MW_{th}, 5 kW/m²-K, 20 kN/m
- Other physical effects may need investigation
 - Corrosion
 - Thermal fatigue / striping
 - Radiation damage

Conclusions

- When considering only the average coolant outlet temperature, SS 316L has more flexibility than Hastelloy-N
- Methodology can be extended to any other design criteria or input
 - Other effects can be investigated with the same methods
- Successful coupling of high-fidelity physics with UQ tools can provide a robust method for reactor design analysis

References

- 1. RUBIOLO, P. R., RETAMALES, M. T., GHETTA, V., GIRAUD, J., "High Temperature Thermal Hydraulics Modeling of a Molten Salt: Application To a Molten Salt Fast Reactor (MSFR)", ESAIM: Proceedings and Surveys (2017).
- 2. WELLER, H. G., TABOR, G., JASAK, H., FUREBY, C., "A tensorial approach to computational continuum mechanics using objectoriented techniques," Computers in Physics **12**(6) (1998).
- 3. BROVCHENKO, M., MERLE-LUCOTTE, E., ROUCH, H., ALCARO, F., AUFIERO, M., CAMMI, A., DULLA, S., "Optimization of the Pre-Conceptual Design of the MSFR—EVOL Project," (2013). URL: <u>http://www.janleenkloosterman.nl/reports/evol_d22_201309.pdf</u>
- 4. CERVI, E., LORENZI, S., CAMMI, A., & LUZZI, L., "Development of a multiphysics model for the study of fuel compressibility effects in Molten Salt Fast Reactor," Chemical Eng. Science **193** (2019) 379-393.
- 5. AUFIERO, M., CAMMI, A., GEOFFROY, O., LOSA, M., LUZZI, L., RICOTTI, M. E., ROUCH, H., "Development of an OpenFOAM model for the Molten Salt Fast Reactor transient analysis," Chemical Eng. Science **111** (2014) 390–401.
- MATHIEU, L., HEUER, D., MERLE-LUCOTTE, E., BRISSOT, R., LE-BRUN, C., LIATARD, E., LECARPENTIER, D., "Possible configurations for the thorium molten salt reactor and advantages of the fast nonmoderated version," Nuclear Science and Eng., **161**(1) (2009) 78–89.
- 7. FIORINA, C., CLIFFORD, I., AUFIERO, M., & MIKITYUK, K., "GeN-Foam: a novel OpenFOAM based multi-physics solver for2D/3D transient analysis of nuclear reactors," Nuclear Eng. and Design **294** (2015) 24–37.
- ADAMS, B.M., BOHNHOFF, W.J., DALBEY, K.R., EBEIDA, M.S., EDDY, J.P., ELDRED, M.S., HOOPER, R.W., HOUGH, P.D., HU, K.T., JAKEMAN, J.D., KHALIL, M., MAUPIN, K.A., MONSCHKE, J.A., RIDGWAY, E.M., RUSHDI, A.A., SEIDL, D.T., STEPHENS, J.A., SWILER, L.P., AND WINOKUR, J.G., "Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.15 User's Manual," Sandia Technical Report SAND2020-12495 (2021).