5.5 UNIVERSITY OF

LR

&% CAMBRIDGE

SCONE: an open-source Monte Carlo neutron
transport code for research and teaching

Mikolaj A. Kowalski, Paul M. Cosgrove, Valeria Raffuzzi, Nathan Ravoisin, Eugene

Shwageraus

23/06/2022

Engineering - Energy, Fluid dynamics and Turbo-machinery

Contents

» What is SCONE?
» Software design
» Validation

» Experience in code development:
& Masters projects

& Research projects

a» Points for discussion

2.5 UNIVERSITY OF
¥ CAMBRIDGE

Stochastic

Calculator ‘

Of s

Neutron Transport S =3

Equation

n Particle Transport Monte Carlo Code for Nuclear Engineering Applications
n Academic focus -> targeting Masters students and PhDs

» Development began in 2017

» Designed for modification: Object-Orientation, well-defined abstractions
v Use: Teaching, New Algorithms Prototyping

» Prioritise modifiability over performance... ish

2.5 UNIVERSITY OF
¥ CAMBRIDGE

SCONE: software engineering

» Written in Fortran 2008:
 Easyto learn & read without sacrificing performance
* Informative compiler errors, easy-to-read standard
* Reasonably well supported (OpenMP, OpenACC, ...)
a» Automated testing:
* Unit and integration tests with pfUnit framework
a» Open-source: the only open-source reactor physics code in the UK

a Accessible at bitbucket.org/Mikolaj Adam Kowalski/scone

2.5 UNIVERSITY OF
¥ CAMBRIDGE

The case for SCONE

Why not just use OpenMC?
* Transport() function is not virtual = There is ONE way to do the calculation
* From architecture (it seems):
e Priority of OpenMC: Fast & Scalable Calculations of Reactor Problems
* Not a priority of OpenMC: Supporting implementation of "wacky" (often not very
useful in practice) ideas
* E.G. Does not support delta-tracking in its current implementation
 NOTE: Not a criticism of OpenMC, but an observation that its priorities seems to be much
different from SCONE’s

How does SCONE fit?:

e Goal: Challenging to use, Easy to modify, Somewhat slow to execute

* Expose the user to some gritty details of MC methods in input files (similarly to
OpenFOAM)

* Allow maximum flexibility in defining calculation sequences

* Define clear abstraction for interaction with key components (Nuclear Data, Geometry,
Tallies).

e Try to optimise for speed of : Idea - Prototype Implementation; not Input - Result

2.5 UNIVERSITY OF
¥ CAMBRIDGE

SCONE: structuring

] —— Apps
1! Beturns number of particles produced on average by the reaction —— CollisionOperator
t L— CcollisionProcessors
Il Rrmg:
] I-‘x_ga._.) . _) —— DataStructures
1 E [in] -» Incident particle energy [MeV]
R — Geometry
I'l Result: —— csgRepresentation
I Bhverage number of particles for an incident energy E. —— SurfaceObjects
1 .
- . |— Cylinders
!l Errors:
I If E is invalid {e.g. —ve) or cutside of bounds of data table N = 0.0 is returned. | Planes
oy L— TruncCylinders
function release(self, E) result (N) L— Universes
import :: defReal, uncorrelatedReactionCE Tallies
class (uncorrelatedReacticonCE), intent(in) :: self
real (defReal), intent(in) v B TallyClerks
real {defReal) 1t N —— TallyClerksOLD
end function release L— keffClerk
—— TallyFilters
—— TallyMaps
—— TallyResponses

n» Documentation comment for each procedure and class
n» Based on Google docstring style for Python
n Hopefully clearly communicates specification for each code component

n Folder structure follows code structure to ease navigation

UNIVERSITY OF
CAMBRIDGE

SCONE: validation and performance

Successfully tested on standard MCNP criticality benchmarks: compared to MCNP and/or

Serpent reference results

Works on fast, thermal, uranium, plutonium, water, deuterium...

CPU time [min] Serpent SCONE
Eigenvalue comparison Flattop23 221 58
o S FlattopPu 247 70
00T T 1 Jezebel233 40 6
= s0f] Jezebel240 33 8
PO NI A O A T L] LEUSTO2 615 291
£ - PNL2 223 108
O gyt
- -+ 5 : : Je:e?el Spectrum , —
400 - 1 1L] B ”[l ‘ y J
- * LT | .
E E‘ E.- i.g:_ % g % % B % % g 15” 107? érﬂ‘;w ev) 10° 10t
@ E E E ° _J g E @ DD: % sq . Popsy ICn‘re Spectrum , ,
L1] A
2 UNIVERSITY OF

CAMBRIDGE

Masters projects

Experiences of SCONE Masters projects
n Very successful in short time (3 to 6 months)

» Showed that it is possible for Master’s students to
contribute to the development

n Positive feedback from the students on SCONE ©
Lessons learned:

» Students tend to stay quiet: can spend a lot of
time struggling with problems easy to correct if
they ask for help

n Necessary to enforce good style

2.5 UNIVERSITY OF
¥ CAMBRIDGE

Previous projects:
Photon transport
Unstructured meshes
Alpha eigenvalue
Isotopic depletion
Photon-neutron coupling
Implicit Monte Carlo
Low population systems
DBRC + OTF Doppler

Upcoming projects:
CMFD
Dynamic Monte Carlo

Masters projects

CASE 1: Photon transport CASE 2: Photon-neutron coupling

-6 -4 2 0.1 0 0.1 0 0.05 0.1 015 Energy Spectrum UEZ) Inline
I = e I e S — 101
5 iy
4 4 m
4 <
3 3 3 E 10-1
2 2 , -E
1 1 | g
T T g P 10
o Eo £ E
~ w = =
-l -l . 1]
2 B , L
-2 10~3
3 Y 3 E
= SCONE neutron
-4 '4E . o 4]
| I e 7] —— SCONE photon
_5 _5 s "7 L. L) = L] | | ” lD_ T4
I 2 3 4 s 12 3 4 s 12 3 4 s a SERPENT neutron
r (em) r (em) r (em) [75] —— SERPENT photon
(a) logy,(Integral flux) (b) Relative difference (c) Standard deviation 10-2 1072 107 10!

ELEI\:'IeV]
Log,o(Photon Flux) in an iron cylinder
10 MeV Beam (compared against Serpent)

UNIVERSITY OF
CAMBRIDGE

Masters projects

o Teleportation error in a Marshak wave problem
CASE 3: Thermal Radiative Transfer

1.0
0.8
£
oy =
Thermal equilibrium in an infinite problem B o6
a
g
1.0 -
¥ E 04
&
-
0.8 1 =
0.2
0.6 N=128
0.0
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
Distance
0.4 1.0
—— At=0.01
At=0.05
— At=0.1
0.21 0.8 — At=05
” —— Radiation Energy ¢
ats, ;
—— Temperature ’a': 0.6
0.0/ ‘ g
0 2 4 6 8 10 12 14 16 18 20 o
Time Step Number :
=]
= 04 l
e
-
-
0.2
|
0.0
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
Distance
UNIVERSITY OF

" CAMBRIDGE

Research projects

» PhD projects — acceleration methods

Surface tracking distance caching

MG — CE variable fidelity geometry: our motivating problem

Functional representation of cross sections
e Source convergence acceleration using MG
» Also less conventional stuff

e Tramm’s Random Ray Method

2.5 UNIVERSITY OF
¥ CAMBRIDGE

Surface tracking distance caching

» Surface tracking demands checking the distance to

the boundary of every universe at every particle
flight

» Monte Carlo geometries usually composed of
multiple nested ‘universes’

Lvl 1: In/Out
» In reactor geometries, particles may cross many
surfaces before colliding ‘
03 i taen Lvl 2: Lattice | y] 3. Pin cells

o
N
]

e
N

L

i e —

=]
-
v

Track Probability [-]

o
-

o
o
v

—

=]

5 10 15 20 25 30 35 40
Number Of Segments in a Track [-]

UNIVERSITY OF
' CAMBRIDGE

Surface tracking distance caching

» Remember the distance to the
boundary at higher universe levels
and decrement them each flight

» Two days to implement and test

a Due to abstracting movement to a
geometry function

v Easytoadda ‘move_withCache’ by With Cache
duplicating, adding another ce
argument and caching logic

» Also had an extra conditional in the
transport operator

Only cylinder remains in the profile

n A few tricks to handle FP error
accumulation: periodic cache reset
or Kahan summation

= 5 UNIVERSITY OF
¥ CAMBRIDGE

Source convergence acceleration with MG inactive cycles

Converge the fission source with multi-group (MG) cross sections during the inactive cycles,
and tally results with continuous energy (CE) cross sections during the active cycles.

SCONE already had support for both continuous energy (CE) and multi-group (MG) nuclear
data (also at the same time): very quick to implement!

» Adding a tally to compute MG cross sections

4.35

v Adding subroutines to the physics package e

MG inactive 400k

4.3
- Switch from CE to MG: initialise the material
objects with the calculated MG cross sections, and)

convert the source neutron energy into an energy
group

42r

Shannon Entropy [-]

415}
- Switch from MG to CE: samples the source neutron

L L L L L L L L L L ‘
100 200 300 400 500 600 700 800 900 1000 1100
Runtime [min]

energy from a CE distribution an

2 5 UNIVERSITY OF
' CAMBRIDGE

The Random Ray Method

n» Method of Characteristics transport solver (but stochastic)
» Changes to SCONE: Wi o(8") = Wg g(s')e ™00 4+ Z22(1 — e i)
— Copy paste a Physics Package, particle

— Remove most of both while adding in flux vectors and the (very simple) Random Ray

algorithm
— Add a move subroutine with different logic for a vacuum boundary hit
— Add Colin Josey’s exponential evaluator

— Make some long-overdue upgrades to pin universes (azimuthal division) and
visualisation (easy plotting of flux maps)

— Optional: mess around with distance caching to see if it helps
n» Two weeks (thanks to plenty of guidance from John Tramm)
n Also shows limits of SCONE: not desirable to abstract everything away all the time

2 5 UNIVERSITY OF
' CAMBRIDGE

The Random Ray Method

» Result: pretty C5G7 flux plots and 3ns/integration (and a conference trip)

n Obviously not novel — but now we can research TRRM!

— 1.6e+01

2 5 UNIVERSITY OF
' CAMBRIDGE

Has anyone run a criticality calculation with SCONE?

A s SCONE easy to use? To understand?

A Long term Fortran compiler support? Fortran tools and code reuse.

Does anyone set, e.g., ‘write a Dancoff factor tally’ as a student assignment?

How can we make SCONE more attractive to the research community?

What experiences do others have of student code development projects?

UNIVERSITY OF
¥ CAMBRIDGE

THANK YOU FOR YOUR ATTENTION

2.5 UNIVERSITY OF
¥ CAMBRIDGE

MG — CE variable fidelity geometry

n Different data types used in different geometrical regions

n» Requires a clever fission source normalisation, different in the

two regions!

» Heavily reduces computational time

35 35

30 i 30

25 = 25
e

20 - 20

15 N 15

10 - 10

10 15 20 25 30 35 S 10 15 20

UNIVERSITY OF
CAMBRIDGE

30

Periodic BC

Periodic BC
)§1poriag

Periodic BC

Source convergence acceleration

n» Monte Carlo needs inactive and active cycles

Source Tallying
convergence results

» The simulation takes long to converge in problems with high dominance ratio!

n Calculation route:
Burnt PWR assembly test case

e Calculate MG cross sections on-the-fly during

LN
few CE cycles O
. . . @O
e Switch to multi-group cross sections for the rest " Yolol®
of the inactive cycles ele] 101W
Q0@ @f
e Switch back to continuous energy for all the ool 1 C_/Q .
. . s CO@OVO0OOL
active cycles (to maintain full fidelity) EVaTaY Yatay Yoy

UNIVERSITY OF
' CAMBRIDGE

Source convergence acceleration

» Speed-up convergence by a factor of 5
0.04
» Memory usage doesn’t grow substantially oez
0
~ Final results are generally unaffected o
-0:08
1 2 3 4 5 6 7 8 9
x node
435 10
I'?-llélir:'laa[:tlr\z 400k 8 T b
43| st T |
ERr———nE
= \ g o :|:¥£TTTTI:: L HE==" T
E a2f 5 af T:I MHTHHW&TTﬁi % N
’ é i %MG 100k ::::i::;"_ i
i | ST o -
a8k CE std 400k
CE std 1m
1 10IO 2[;0 3(IJO 460 5(I)D 660 760 800 900 1000 1100 -19200 .1‘5[} _160 _éo [; 5‘0 1(I)0 15I0 200

Runtime [min]

Axial Position [cm]

Transport loop in eigenPhysicsPackage

neutron % pRNG => pRNG
call neutron % pRNG % stride(n)

call self % thisCycle % copy(neutron, n)
bufferLoop: do
call self % geom % placeCoord(neutron % coords)
neutron % k_eff = k_new

call neutron % savePreHistory()

history: do
call transOp % transport(neutron, tally, buffer, self % nextCycle)
if(neutron % isDead) exit history

call collOp % collide(neutron, tally, buffer, self % nextCycle)
if(neutron % isDead) exit history
end do history

if (buffer % isEmpty()) then
exit bufferLoofy
else
call buffer % release(neutron)
end if

end do bufferLoop

UNIVERSITY OF

Transport operator

, :: transportOperator

(nuclearDatabase), :: xsData == null()

(geometry), :: geom => null()
contains
:: transport
p:oinit
i kill
(transit), :: transit

transportOperator

26 UNIVERSITY OF
CAMBRIDGE

Delta tracking implementation

(transportOperator) :: transportOperatorDT

]
contains

:: transit => deltaTracking
transportOperatorDT

contains

subroutine deltaTracking(self, p, tally, thlsCycle nextCycle)

(transportOperatorDT), () :: self

(particle), (i p
(tallyAdmin), (i tally

(particleDungeon), :: thisCycle

(particleDungeon), :: nextCycle

(defReal) : majorant_inv, sigmaTl, distance

(100), :: Here = deltaT|ack Lng {tuansportOIperatorDT_class.f90)'

majorant_inv = ONE / self % xsData % getMajorantXS(p)
DTLoop:do
distance = -log(p% pRNG % get()) * majorant_inv

call self % geom % teleport(p % coords, distance)

if (p % matIdx() == OUTSIDE_FILL) then

;B UNIVERSITY OF

