
SCONE: an open-source Monte Carlo neutron
transport code for research and teaching

Mikolaj A. Kowalski, Paul M. Cosgrove, Valeria Raffuzzi, Nathan Ravoisin, Eugene

Shwageraus

23/06/2022

1

Engineering - Energy, Fluid dynamics and Turbo-machinery

Contents

What is SCONE?

Software design

Validation

Experience in code development:

Masters projects

Research projects

Points for discussion

2

SCONE

3

Stochastic

Calculator

Of

Neutron Transport

Equation

Particle Transport Monte Carlo Code for Nuclear Engineering Applications

Academic focus -> targeting Masters students and PhDs

Development began in 2017

Designed for modification: Object-Orientation, well-defined abstractions

Use: Teaching, New Algorithms Prototyping

Prioritise modifiability over performance… ish

SCONE: software engineering

4

Written in Fortran 2008:

• Easy to learn & read without sacrificing performance

• Informative compiler errors, easy-to-read standard

• Reasonably well supported (OpenMP, OpenACC, …)

Automated testing:

• Unit and integration tests with pfUnit framework

Open-source: the only open-source reactor physics code in the UK

Accessible at bitbucket.org/Mikolaj_Adam_Kowalski/scone

The case for SCONE

5

Why not just use OpenMC?
• Transport() function is not virtual → There is ONE way to do the calculation
• From architecture (it seems):

• Priority of OpenMC: Fast & Scalable Calculations of Reactor Problems
• Not a priority of OpenMC: Supporting implementation of "wacky" (often not very

useful in practice) ideas
• E.G. Does not support delta-tracking in its current implementation

• NOTE: Not a criticism of OpenMC, but an observation that its priorities seems to be much
different from SCONE’s

How does SCONE fit?:
• Goal: Challenging to use, Easy to modify, Somewhat slow to execute
• Expose the user to some gritty details of MC methods in input files (similarly to

OpenFOAM)
• Allow maximum flexibility in defining calculation sequences
• Define clear abstraction for interaction with key components (Nuclear Data, Geometry,

Tallies).
• Try to optimise for speed of : Idea → Prototype Implementation; not Input → Result

SCONE: structuring

6

Documentation comment for each procedure and class

Based on Google docstring style for Python

Hopefully clearly communicates specification for each code component

Folder structure follows code structure to ease navigation

├── Apps

├── CollisionOperator

│ └── CollisionProcessors

├── DataStructures

├── Geometry

│ ├── csgRepresentation

│ ├── SurfaceObjects

│ │ ├── Cylinders

│ │ ├── Planes

│ │ └── TruncCylinders

│ └── Universes

├── Tallies

│ ├── TallyClerks

│ ├── TallyClerksOLD

│ │ └── keffClerk

│ ├── TallyFilters

│ ├── TallyMaps

│ └── TallyResponses

…

SCONE: validation and performance

7

Successfully tested on standard MCNP criticality benchmarks: compared to MCNP and/or

Serpent reference results

Works on fast, thermal, uranium, plutonium, water, deuterium…

CPU time [min] Serpent SCONE

Flattop23 221 58

FlattopPu 247 70

Jezebel233 40 6

Jezebel240 33 8

LEUST02 615 291

PNL2 223 108

Eigenvalue comparison

Masters projects

8

Experiences of SCONE Masters projects

Very successful in short time (3 to 6 months)

Showed that it is possible for Master’s students to

contribute to the development

Positive feedback from the students on SCONE ☺

Lessons learned:

Students tend to stay quiet: can spend a lot of

time struggling with problems easy to correct if

they ask for help

Necessary to enforce good style

Previous projects:

- Photon transport

- Unstructured meshes

- Alpha eigenvalue

- Isotopic depletion

- Photon-neutron coupling

- Implicit Monte Carlo

- Low population systems

- DBRC + OTF Doppler

Upcoming projects:

- CMFD

- Dynamic Monte Carlo

Masters projects

9

Log10(Photon Flux) in an iron cylinder
10 MeV Beam (compared against Serpent)

CASE 1: Photon transport CASE 2: Photon-neutron coupling

Masters projects

10

CASE 3: Thermal Radiative Transfer

Thermal equilibrium in an infinite problem

Teleportation error in a Marshak wave problem

Research projects

11

PhD projects – acceleration methods

• Surface tracking distance caching

• MG – CE variable fidelity geometry: our motivating problem

• Functional representation of cross sections

• Source convergence acceleration using MG

Also less conventional stuff

• Tramm’s Random Ray Method

Surface tracking distance caching

12

Surface tracking demands checking the distance to
the boundary of every universe at every particle
flight

Monte Carlo geometries usually composed of
multiple nested ‘universes’

In reactor geometries, particles may cross many
surfaces before colliding

Surface tracking distance caching

13

Remember the distance to the
boundary at higher universe levels
and decrement them each flight

Two days to implement and test

Due to abstracting movement to a
geometry function

Easy to add a ‘move_withCache’ by
duplicating, adding another
argument and caching logic

Also had an extra conditional in the
transport operator

A few tricks to handle FP error
accumulation: periodic cache reset
or Kahan summation

Source convergence acceleration with MG inactive cycles

14

Converge the fission source with multi-group (MG) cross sections during the inactive cycles,

and tally results with continuous energy (CE) cross sections during the active cycles.

SCONE already had support for both continuous energy (CE) and multi-group (MG) nuclear

data (also at the same time): very quick to implement!

Adding a tally to compute MG cross sections

Adding subroutines to the physics package

- Switch from CE to MG: initialise the material

objects with the calculated MG cross sections, and

convert the source neutron energy into an energy

group

- Switch from MG to CE: samples the source neutron

energy from a CE distribution

The Random Ray Method

15

Method of Characteristics transport solver (but stochastic)

Changes to SCONE:

‒ Copy paste a Physics Package, particle

‒ Remove most of both while adding in flux vectors and the (very simple) Random Ray

algorithm

‒ Add a move subroutine with different logic for a vacuum boundary hit

‒ Add Colin Josey’s exponential evaluator

‒ Make some long-overdue upgrades to pin universes (azimuthal division) and

visualisation (easy plotting of flux maps)

‒ Optional: mess around with distance caching to see if it helps

Two weeks (thanks to plenty of guidance from John Tramm)

Also shows limits of SCONE: not desirable to abstract everything away all the time

The Random Ray Method

16

Result: pretty C5G7 flux plots and 3ns/integration (and a conference trip)

Obviously not novel – but now we can research TRRM!

Discussion

17

Has anyone run a criticality calculation with SCONE?

Is SCONE easy to use? To understand?

Long term Fortran compiler support? Fortran tools and code reuse.

Does anyone set, e.g., ‘write a Dancoff factor tally’ as a student assignment?

How can we make SCONE more attractive to the research community?

What experiences do others have of student code development projects?

18

THANK YOU FOR YOUR ATTENTION

MG – CE variable fidelity geometry

19

Different data types used in different geometrical regions

Requires a clever fission source normalisation, different in the

two regions!

Heavily reduces computational time

Source convergence acceleration

20

Monte Carlo needs inactive and active cycles

The simulation takes long to converge in problems with high dominance ratio!

Source
convergence

Tallying
results

Calculation route:

• Calculate MG cross sections on-the-fly during

few CE cycles

• Switch to multi-group cross sections for the rest

of the inactive cycles

• Switch back to continuous energy for all the

active cycles (to maintain full fidelity)

Burnt PWR assembly test case

Source convergence acceleration

21

Speed-up convergence by a factor of 5

Memory usage doesn’t grow substantially

Final results are generally unaffected

Transport loop in eigenPhysicsPackage

22

Transport operator

23

Delta tracking implementation

24

