
Challenges and Lessons Learned from 10 Years of
OpenMC Development

Paul K. Romano
Computational Scientist, Argonne National Laboratory

ONCORE Meeting
June 23, 2022



Motivation

• OpenMC has been under continuous development for 11 years
and has undergone substantial change

• Arguably the first successful open-source transport code in the
nuclear engineering space

• The goal of this paper is to highlight challenges and lessons
learned over the course of a decade for the benefit of others in
the nuclear OSS community

• Specifically focused on community codes

1



Challenges



Takeaway

Most challenges stem from the fact that the
incentive structures in the R&D establishment are
not aligned with the needs of a growing, OSS

community

2



Staffing

• Most developers are staff/postdocs/students at research
institutions and universities

• Funding is geared toward R&D and science goals
• Maintenance and user support are usually not called out
specifically in work scope — crucial for success and
sustainability

3



User Interaction

• Significant time commitment is necessary to support
user/developer community

• Challenges:
• Intermittent nature of developer contributions
• Constant onslaught of user questions / requests

• Opportunities:
• Users help uncover bugs and improve code quality
• Incentivizes better documentation habits
• Positive interactions eventually yield competent users who
themselves can contribute to the community

4



Organizational Ownership

• If a community code is successful, ownership is not centered at
a single institution

• Any given institution has less incentive to invest in the code and
advocate for the developer community if they don’t view it as
“their” code

• Governance can potentially become more difficult — clear need
to formalize governance structure of project

5



Metrics

• For OSS, some of the traditional metrics (number of registered
users, e.g.) are not readily available

• Lack of metrics can make it difficult to show impact of the
software, but there are ways:

• Number of active users on user’s forum
• Number of GitHub clones
• Number of contributors/contributions
• GitHub stars
• Citations to major papers*

• Need to be careful because it’s easy to “game” most metrics

6



Software Challenges

• As software grows, it’s more difficult to make breaking changes
• Hyrum’s Law — any observable behavior of an API will be relied
on by someone

• Technical debt can, and does, accumulate over time; it becomes
increasingly expensive to pay down technical debt (and hard to
justify to a sponsor)

• Maintaining performance can be difficult when new features are
constantly added

7



Technical Expertise

• As OpenMC has grown, so has the minimum skill set needed to
meaningfully engage

• Skills: C++, Python, CMake, git, MPI/OpenMP, testing, CI/CD
• As code matures, there are fewer opportunities for low-hanging
fruit to be addressed by newcomers

8



Benefits and Lessons Learned



Takeaway

Despite the challenges, there are many crucial
advantages that come with open source

development and I truly believe the OSS model is
here to stay for nuclear

9



Meritocracy

• Under our governance model, anyone—regardless of
affiliation—can make a meaningful contribution if they are
willing to invest time

• Giving others equity means they too are vested in the success of
the project

• Community nature of code helps to engender collaborations
across multiple institutions

10



Free Resources

• For an OSS project, you can easily secure free:
• Repository hosting
• CI/CD services
• Web hosting
• DOI assignment for code releases
• Discussion forum

• All these resources improve user/developer experience

11



Return on investment

• For sponsors (particularly government), allowing code to be
open sourced leads to a higher return on investment since code
artifacts can be easily reused

• Responsible stewardship of taxpayer dollars

12



Building sustainability

• While it’s easy to open source a project, it can take years to
build a true community

• User/developer growth happens slowly and to really reach
sustainability, you need one or more people to be in it for the
long haul

• Bus factor: How many people would need to get hit by a bus in
order to effectively stop development?

13



Code leadership

• Although I have been the de facto / official lead developer of
the code for its entire life, most of the substantial recent
contributions in the code were not my work:

• Depletion (Colin Josey, MIT)
• Photon Transport (Amanda Lund, ANL)
• Python API (Will Boyd, MIT)
• CAD-based geometry (Patrick Shriwise, ANL)

• Of the above examples, three of them were unsolicited

14



Community building

• Although time spent interacting with users/developers might be
seen as a burden, it pays off in unexpected ways that are hard to
measure

• A user who has a positive experience may convince their
colleagues to consider using it

• A developer who feels welcomed may make contributions that
could expand the potential use cases and scope of the code

• Technical decisions and good software design are important, but
building a sense of commuity is equally important

15



Conclusions



Conclusions

• OSS development comes with many challenges, some of which
are unique to the nuclear community

• Many of these challenges are unresolved, particularly funding
and alignment with R&D goals

• OpenMC has benefitted from constant development over a
decade, allowing it to grow a substantial user/developer
community

• Despite challenges, the open-source model has been hugely
beneficial for OpenMC

16



Thank you!


	Challenges
	Benefits and Lessons Learned
	Conclusions
	Thank you!

