

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

Personal Online DosImetry Using CoMputational Methods

Filip Vanhavere, Mahmoud Abdelrahman, Pasquale Lombardo

Framework for individual monitoring: why is dosimetry needed

Individual monitoring of workers

Control occupational exposure

Dose limits and ALARA principle

Ŷ

Inform workers of their exposure

Problems with individual dosimetry

- Workers don't like to wear dosimeter
- Workers especially don't like to wear more than one dosimeter
- Still not all parts of body covered
 What if other parts of body need dosimetry in future (brain, heart,...)?
- Not always strict use of dosimeters:
 - Forgetting
 - Not correct place

Copyright © 2017 SCK•CEN

Uncertainties in personal dosimetry

- Risk is given by effective dose
 - Complicated system of operational quantities to estimate effective dose
 - $H_p(10)$ is only estimation of E
- No dosemeter is perfect for H_p(10)
 - Non-linearity, fading, ...
 - Energy and angular dependence....
- Loosing dosemeter: all data lost...
- Not wearing correctly
 - Dependent on homogeneity of the field

Personal Dosimetry: what brings the future?

- More use of active personal dosemeter: direct feedback
- May be no need for physical dosimeters?
- Suppose we can use <u>Monte-Carlo simulations</u> to calculate on-line all doses
- Advantages:
 - No more need for physical dosimeter
 - No more loosing dosimeters
 - No more need for operational quantities
 - No more worries for changing quantities/weighting factors
 - Doses to all organs can be known
 - Personalized dosimetry possible
 - Better accuracy possible
 - Faster feedback to workers

Exploiting most advanced technologies

Monte Carlo Simulations ← Human Computationa Models

Computer Vision Parallel CPU/GPU Computing

Machine Learning

PODIUM: Personal Online DosImetry Using computational Methods

- CONCERT 2nd Call
- EC project
- 24 months, start January 2018
- 7 partners: SCK•CEN (Belgium), UPC (Spain/Catalunya), HMGU (Germany), LU (Sweden), PHE (UK), EEAE (Greece), SJH (Ireland)

- Improve occupational dosimetry via an online dosimetry application using computer simulations: without the use of physical dosemeters
- **Develop an online application** in which we will calculate individual occupational doses
- Apply and validate the methodology for two situations where improvements in dosimetry are urgently needed: **neutron workplaces** and **interventional radiology**
- The legal aspects to introduce this or similar techniques as an official dosimetry method will also be established

Personal Dosimetry: Interventional Radiology

Personal Dosimetry: Inhomogeneous fields

Dose Simulations Input

RAF: Realistic Anthropomorphic Flexible Phantom

- Polygonal Mesh Boundary Representation
- Organ and tissue masses adjusted according to ICRP 89
- Computational model with 2900 tissues segmented
- Dosimetric validation in comparison with ICRP 116

Development and Validation of the Realistic Anthropomorphic Flexible (RAF) Phantom

Lombardo, Pasquale A.; Vanhavere, Filip: Lebacq, Anne L.; Struelens, Lara: Bogaerts, Ri Health Physics , Volume 114 (5) – Jan 1, 2018

Tracking to computational phantom

Realistic Anthropomorphic Flexible Phantom (RAF)

Animation of RAF phantom

Computational phantom framework

Geometry Input

Define of the workplace geometry for the calculations

 Modeling and tracking of important moving objects (shielding) is also needed

Radiation Source Input: Radiology Case

X-Ray spectrum

- Tube potential (kVp value)
- Tube current
- Added filtration
- Target material
- Voltage waveform

Tube Angulation

• C-arm projections

Interventional Radiology and Cardiology Parameters					
Parameter	Range				
High Voltage	60-120 kVp				
Intensity	5-1000 mA				
Inherent filtration	3-6 mm Al _{eq}				
Additional filtration	0.2-0.9 mm Cu				
Energy range of scattered spectra	20 keV – 100 keV				

Input

- Radiation dose structured report (RDSR) extracted from the X-ray machine
- Time synchronization with tracking
- DAP meter for normalization

Copyright © 2017 SCK•CEN

Computational dosimetry ... the solution?

Challenge: Make Monte Carlo calculations fast enough

Fast Monte Carlo methods for interventional procedures

MCGPU-IR

Based on MC-GPU (2009) a MC code for the simulation of photon transport in restricted geometrical set-up's

PENELOPE/penEasyIR

Based on PENELOPE v2014, a standard multi-purpose MC code

Optimization Algorithm

Optimized simulation time NPS: number of simulated particles

Prioritization of simulations Irradiation event with high dose

Model Training

Scoring

Validation

Test at UZ-VUB - Brussels

Test at CHU-Liège

Validation Case: Angioplasty Procedure

2018-10-02 01:19:37

- Measurement of accumulated dose $H_p(10)$ of operators with Thermo EPD Mk2.3
- Estimation of dosimeter location by the tracking system

Procedure Dose Report

Total: 15935.6µGym² 1990mGy

Procedure parameters:

- kVp: ٠
- 80 125 kVp -
- DAP: •
- 15935.6 µGy.m2
- **Projections:** ٠
- 0LAO/0CRA -
- 75RAO / 0CRA -
- 27RAO / 0CRA -

Patient Position: HFS 02-Oct-18 12:55:45							
1 DSA FIXED VCS	2F/s 02-Oct-18 13:17:02 47.6mGy 0LAO 0CRA 13F						
2 DSA FIXED VCS 6s	2F/s 02-Oct-18 13:19:36						
A 125kV 295mA 199.6ms ****** large 0.0Cu 32cm 1655.2µGym ²	217mGy 75RAO 0CRA 11F						
3 DSA FIXED VCS 6s A 125kV 295mA 199.6ms ******* large 0.0Cu 32cm 1647.7μGym ²	2F/s 02-Oct-18 13:20:41 216mGy <mark>75RAO</mark> 0CRA 11F						
4 DSA FIXED VCS 5s	2F/s 02-Oct-18 13:26:03						
A 125kV 295mA 199.6ms ****** large 0.0Cu 32cm 1347.0μGym ²	177mGy 75RAO 0CRA 9F						
5 DSA FIXED VCS	2F/s 02-Oct-18 13:26:41						
A 125kV 295mA 199.6ms ****** large 0.0Cu 32cm 1646.9µGym ²	216mGy 75RAO 0CRA 11F						
6 DSA FIXED VCS 6s	2F/s 02-Oct-18 13:27:08						
A 125kV 295mA 199.6ms ****** large 0.0Cu 32cm 1647.1µGym ²	216mGy 75RAO 0CRA 11F						
7 DSA FIXED VCS 6s	2F/s 02-Oct-18 13:28:58						
A 125kV 295mA 199.6ms ****** large 0.0Cu 32cm 1646.7μGym ²	216mGy 75RAO 0CRA 11F						
8 DSA FIXED VCS 5s	2F/s 02-Oct-18 13:29:34						
A <mark>125kV 295mA 199.6ms</mark> ****** large 0.0Cu 32cm 1496.8μGym ²	196mGy 75RAO 0CRA 10F						
9 DSA FIXED VCS 6s	2F/s 02-Oct-18 13:30:46 V						
A 82kV 536mA 160.6ms ***** large 0.0Cu 32cm 1090.2µGym ²	143mGy 27RAO 0CRA 11F						
Accumulated exposure data 02-Oct-18 14:42:19							
TotalFluoro: 5.4min							

5.4min

Results from CHU-Liège case 4

Validation Case		A	Simulations Accumulated H _p (10)		Measured EPD Accumulated <i>H</i> _p (10)	
EndoVasc CHU-Liège Case 4 (PCI)		se 4	39 µSv		23 μSv	
Event Time (s)	FL1 7	FL2	FL3 6	FL4 5	FL5 6	
RDSR DAP (μ Gy. m^2) mGy	536.5 47.6	1655.2 217	1647.7 216	1347 177	1646.9 216	
F6-DOS (MeV/g/#) $H_p(10)$ (μ Sv)	3.25E-09 2.36	4.85E-05 9.27E-10 4.84	9.27E-10 4.81	4.85E-05 9.27E-10 4.73	9.27E-10 4.81	
Event Time (s) RDSR DAP (µGy.m ²) mGy F6-REF (MeV/g/#) F6-DOS (MeV/g/#)	FL6 6 1647.1 216 4.85E-05 9.27E-10	FL7 6 1646.7 216 4.85E-05 9.27E-10	FL8 5 1496.8 196 4.85E-05 9.27E-10	FL9 5 1090.2 143 9.13E-05 1.35E-09	Total	
$H_p(10)$ (µSv)	4.81	4.81	5.24	2.46	39	

Conclusion

- Part of the future will be dosimetry without physical dosemeters
 - Although dosimeters still will exist for many applications
- Results show the validity of the method in interventional radiology and some neutron workplaces
- Still some challenges to be solved
 - Shielding tracking, worker identification
- Increasing contribution from AI and ML
 - "prediction" of doses instead of simulating....
- Important aspect of visualisation of radiation
 - ALARA and training tool
- Expanding to other applications

Other applications with RAF Phantom

ALARA planning and training tool

Accurate MC simulations using flexible phantoms Planning and analysis dosimetry tool visualizing data in Virtual Reality environment Neural Network based framework for optimizing dose calculations

Why improve dosimetry service for **nuclear medicine** staff?

- High risk of exceeding legal doses of radiation in the extremities
- Accurate dosimetry is very hard for the hands
 - Higher exposures zones varies from one person to another
 - A single ring dosimeter is not enough to measure the whole hands dose
 - Wearing many ring dosimeters is uncomfortable
 - Multiple dosimeters will make dosimetry service more complex and expensive

Local data acquisition – object tracking

Tailor PODIUM data acquisition solution to fit NM requirements by **developing specialized** ML-based person, fingers and object tracking.

 We cannot rely on already available tracking algorithms especially for tracking the radioactive source -> vials, syringes

Train our own Convolutional Neural Network (CNN) using Tensorflow

a acquisition – next steps

Copy right© 2017 SCK•CEN

Copy right © 2017 SCK•CEN

Thank you!

We are looking for projects and partners to apply this methodology for different applications!

Filip.vanhavere@sckcen.be

PODIUM is part of the CONCERT project. This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 662287.

PODIUM Team

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

