The use of Al in food safety and food
fraud: early warning systems

Hans Marvin & Yamine Bouzembrak (WFSR)
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Outline

® State of the Art

e Motivation
e Experience (including limitations)

e Challenges of Al

" Next Steps & Future challenges
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Reactive early warning approaches not
satisfactory; proactive systems needed

Surrounding environment
Pre- early warning

Holistic approach
1T 1T

Proactive systems

L b
Food production Consumers/ animals
chain ¢j>
Early warning Rapid response
Hazard-focused Monitoring
Reactive systems
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Drivers of change having direct/ indirect impact on food

safety (Marvin et al 2019; https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/sp.efsa.2019.EN-1619 )
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Potential system approach

From Farm to Fork

Data of drivers Expert knowledge Chain analysis

Y 3

Method needed that can: 7
" integrate expert knowledge and data, Bayesian

" handle huge amount of data and knowledge gaps,| Networks?
" use a variety of data sources of divers nature.
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Bayesian Network (BN) approach

Steps in the development

Expert consultation | Data collection BN construction BN validation
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Data sources used in the BN model

Linking 36 factors (18 data sources and 8 expert judgements)
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BN modelling applied in many cases

Example 2: Prediction of food fraud type as BN model for food fraud type
reported in RASFF

Model developed
with RASFF data up
to 2013
Model validated G
with RASFF data of W
2014 s
Model performance: e
- 82%corect | OHE
prediction of | i [ s
fraud type - b
- Sl%predicon [ LE
of new fraud : i
‘combinations : i%%’;_“ J
R -
Higher performance thEm
with dynamic model Ly
approach i
BEr
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Machine learning

In our studies we compared the prediction accuracy of BN
to other (>20) machine learning algorithms:
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Prediction accuracy of BN was often superior in classification
problems
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Other AI approaches developed for early
warning of food safety and food fraud

" Detecting food safety & food fraud trends from media (text
mining, network analysis)

" Searching unknown food safety hazards in scientific literature
(word embedding)

" Predicting food safety from satellite images and mobile
pictures (deep learning)

" Automate data collection processing, analysis & visualization
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Example: media & blogs using European Media
Monitor (EMM); early warning & emerging risk

Collection, processing & visualization of media reports
from EMM (food fraud, food supplements, various food
safety topics)

Detected 10 “unknown”
compounds used as
stimulantin food
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Example: Network visualisation; early
warning

Food fraud publications in the media collected by the
WFSR MedISys-FF filter also mentioning COVID
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COVID-19 is expected to drive food fraud and food safety risks (meat and
alcohol)
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Example: Word embedding with scientific literature;
emerging risk

Analyzing > 2 million abstracts and titles, 10 "unknown”
stimulants were detected o
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Example: Al (deep learning) to predict food safety in grass
& maize using satellite images (Sentinel-2); early warning

Efficiency of models: up to 62 % of individual hazards

L®

CONVOLUTIONAL NEURAL NETWORK [CNN)

i

MYCOTOXINS

PESTICIDES

HEAVY METALS

FEATURE DETECTION CLASSIFICATION
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Deep leaning to detect food safety hazards using

mobile phone images

" Deep leaning to detect melamine in milk powder using

mobile phone images

Milk powder polluted with
melamine:

0 mg/kg melamine

1 mg/kg melamine

50 mg/kg melamine Take pictures with a

Samsung Galaxy A8
WAGENINGEN smartphone
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Example: detection of abnormalities in drivers,
prediction of hazards in milk and automatic alerts;

early warning & emerging risk

Develop workflows in KNIME to automatically collected & process data from identified
data sources to show abnormalities and to predict hazardsin milk in the Netherlands
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elasticsearch

GitLab

Checking
updates and
saving data

e Compared with
previous record,

checking ifthe
database has been

Cleaning data

eFiltering by
countries

eFiltering by time

eDeletingcells of ‘no
information
available’

eStructuringdatain
table

Acquiring data

updated

eYes, store the
latestupdated
data and operate
abnormality
detection;

eNo, break

mongoeDB

Detecting
abnormality
and sending

alerts
¢ A utomatic reporting
¢ A utomatic alert
eSaving results

Cloud Infrastructure
HPC
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hazards in
milk
eRunthe BN when
there is anomalies

Visualization
in KIBANA



Workflows of drivers and BN prediction results
visualised in Dashboard

controllers
/\Product name /M\Origin Country /M Control country [\ Year
Eelec{... e Select. o Select... e Select... e
Apples

It will present the
probability of

Lettuce and chicory

Information in
origin counties

Meat, cattle

Veat enicken different fraud types and control

c2 Fraud type probability link to origin
Meat, pig
Milk, whole fresh cow @ CED @ Expirationdate @@ HC @ llegal importation @ Origin labeling @ Tempring mgm
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- IFUILS and vegetables ".. h_
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food fraud map

@ Low @ High @ Midium @ Not available
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High (31.06%)
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Limitations (food safety/ food fraud domain)

" Al developments occur in other domains

" Slow uptake of technologies by authorities (lack of Al
skills)

e Lack of trained personnel => more education
(secondary school, university)

" FAIR principle not well established
e Embed FAIR principle in legal framework
" Communication on Al to society must be improved
e Explainable Al
" Sharing data by stakeholders remains a big challenge

® Federate learning a solution? (FAIR data train
concept)
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Next steps: Federate learning a solution?

Design FDT Data Station  :-

Message
Data Station Interface o éﬁ/ e O
ge O i . .
senice Source: Farm Data Train Blueprint.
] ] /7\7 Luiz Bonino, 2018
APl Service O Individual O
Metadata O | Data Station Services O ‘ baa Og— | < Uete B
Fay ? o A ‘7\ Container O Docker O
sevice  K————  Service
‘ Event-Based O
Service
o g o ©
Service
Point-to- O Publish- O
PointService ||| Subscribe ‘
Service
(5] Data Station
wm)
[ Metadata uEvmleﬂer 5 Dmi‘ 1" Data storage
oot ‘ " et |
Data Station
Metadata |
‘ Access () Train (A
== Dlsmdm Control ‘ Validation
Dataset(s)
=

‘ Logging O

Personal Health Train

Figure 2 - Data Station
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Next steps: Al integrated in hazard
detection and assessment

Broad screening => Al to process large data streams

Internet of things (IoT)
Onsite, online analysis —
Hand held devices

Fast processing technologies
Data e-infrastructures
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Thank you
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