Stable water isotopes in landscapes: big data & ML
opportunities to respond to current challenges on water
resources under environmental chan___
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Challenges of environmental change on water resources
* Climate extremes: heavy rain events and droughts
* Landuse changes: intensification, deforestation, hydropower
* “Homogenization in the water cycle”: Changes in water balance
* Water security
* Water pollution
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Input-output relationships to quantify ages
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A timeline of benchmark tracer publication in hydrology

L. 5, NO. 2 WATER RESOURCES RESEARCH ATPRIL

1969

Determination of the Ground-Water Component of Peak Discharge
from the Chemistry of Total Runoff

GEORGE F. PINDER AND JOHN F. JONES
Nova Scotia Department of Mines, Halifaz, Nova Scotia

Abstract, The ground-water component of stream discharge may be determined from the
chemical characteristics of the stream water. A chemical mass-balance is used to relate total,
direct, and ground-water runoff. To solve the mass-balance equation, it is necessary to
estimate the chemical composition of the ground-water and direct-runoff components, The
solute concentration of ground water is determined from total runoff during baseflow; the
chemical characteristics of direct-runoff are estimated from samples of total runoff collected
from sclected locations in a basin during peak discharge periods. In three small watersheds in
Nova Scotia ground-water runoff constituted from 32 to 42% of peak discharge for the period
of analysis.

Importance of old (pre-event) water

Journal of Hydrology, 43 (1979) 45—65

WATER RESOURCES RESEARCH
1975

Subsurface Flow From Snowmelt Traced by Tritium

J. MARTINEC

Federal Institute for Snow and Avalanche Research, Weissfluhjoch, Daves, Switzerland

An explanation is offered of the apparent discrepancy between the small velocities of subsurface flow
and the watershed response. Environmental tritium in the hydrological cycle provided evidence for a new
insight into the runoff mechanism. By this concept the quick reaction of outflow to a massive groundwater
recharge is brought to agreement with the long residence time of the infiltrated water.
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2 1979

THE ROLE OF GROUNDWATER IN STORM RUNOFF

MICHAEL G. SKLASH and ROBERT N. FARVOLDEN
Department of Geology, University of Windsor, Windsor, Ont. N9B 3P4 (Canada)

Department of Earth Sciences, University of Waterloo, Waterloo, Ont. N2L 3G1 {Canada)

(Accepted for publication April 25, 1979)




Origins of tracer-aided models
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Total catchment storage >> flow variation
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Large isotope damping: storage is 3 orders of magnitude larger than flow



The past: weekly data & coarse spatial resolution

Samples were “simply” expensive
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Recently: Step change through “Big data” from long-term high
resolution tracer data
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In-situ tracer data: it looks easier than it is!
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In-situ tracer data: very quickly REALLY BIG data & detailed insights

into temporal high-resolution processes
In-situ isotope optimal setup
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Generalisation at global scale: spatially BIG data
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High proportion of young water during high flows
But aquifers with old water dominate during low flows
Subsequent work: VERY old water often disconnected from surface waters



Networks and metadata bases of isotopes for spatial big data

Precip GNIP |IAEA - Rivers GNIR IAEA
- Global data set of vapour isotopes

- Regional or “local” maps/ data
bases: landscapes, catchments,
cities...
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Challenges of HAVING big data
Vetting and/or interpreting big data is not trivial:

- Some patterns being revealed that have never been seen before
- Patterns might ‘suggest’ new processes & revealing un-knowns
- New data force us to ask what do these mean?

- Many potential artifacts or analytical challenges exist

- Emergence of new processes — this will impact MODELS
- Need to re-think established assumptions, mechanisms, best
practices, best analyses

Slide inspired by Todd Dawson



New generation of tracer-aided models: explicit mcorpoﬁatlon
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Spatially distributed estimation of water ages at the
catchment scale

Age Stable isotope tracers:

To estimate ages

To estimate total storage

As diagnostics of model states

Runoff

Ala-Aho P, et al. (2017) Hydrology and Earth System Sciences (HESS).




Flux contribution (%)

Importance of vegetation in tackling env. change
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Tracking fluxes & isotopes in landscape compartments
using tracer-aided ecohydrological models

Physically-based modelling captures dynamics
of soil moisture, isotopes in soil & plant xylem
water & sources of plant water

Estimation of water ages of different
compartments: Very young inferred
water age in shallow soil
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ML (e.g. Neural Network) to predict isotopes time series

Plant Xylem isotopes
Stream isotopes
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e Use of LSTM: faster set-up and run time
* Helped confirm some processes (or measurements) not

integrated in models

Slides from Aaron Smith (talks on Wed in WG Water/Environment)




ML to predict isotopes spatially: spatial mapping of...
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Opportunities for AI/M L Thanks to M. Maneta for Input

Combining high-frequency & high spatial resolution data to cope with
increasing pressures on water resources

Extracting patterns from images & time series can assist in classification
of distinct hydrological modes (more meaningful inter-comparisons
between periods / locations with previously undetected similarities)
Reduction of model complexity (from high computational cost to faster
runs)

Predictions in “un-sampled” catchments via similarity detection &
information transfer (e.g. through neural networks)

Bias correction of data & improved parameter regionalization /
simulation for spatially-explicit hydrologic models

Improved data gap filling



Limitations for Big data & ML

Water isotopes: data ownership / Data accessibility
Data limitations: not enough data, variabilities, uncertainties

Sparse datasets: more traditional analysis (classification, regression methods) with
stronger constraining assumptions might perform better

New patterns / processes: correct interpretation (process-based knowledge)
required

Thanks to M. Maneta for Input

ML methods = black boxes, interpretation of hidden information is difficult

ML & Big Data: require LOTS of data for deep learning methods to learn (particularly
for isotope hydrology as usually more “modest” in size)

Lot of “pre-processing” of parameters (e.g. identify optimal No of hidden layers
(depth of the network), No of neurons per layer, type & length of input features)
with little to no guidance on adequate values

Adjustments often via trial & error (tremendous & frustrating time sink)

Can lead to flawed extrapolation or predictions & poor generalization power



Some potential future directions of ML
(in hydrology / water stable isotopes) y, A

Thanks to M. Maneta for Input
Compared to other Sciences (e.g atmospheric sciences) hydrology has not

yet seen wide application of ML methods - plenty of opportunities for
advancement & discovery

Linking ML & process-based knowledge / analysis

Integrating novel types of field observations (e.g. in-situ) into local to
regional models is a new research frontier

“Physics-aware” ML: While ML is excellent at approximating processes &
predicting outcomes - predictions do not necessarily respect basic physical
laws that are foundations in hydrology (e.g. conservation of mass or
conservation of energy): new methods need to consider encoding physical
laws in learning process




Summary

Stable water isotopes: from a specialist sub-field to major data
source for innovation in hydrology

Driven by increasingly cheap & flexible analytical tools

Used to test hypotheses about complex multi-scale hydrological
processes e.g. mixing interactions between various storage, fluxes
and ages

Means to help calibration and/or testing of hydrological models
Need to consider plant-soil-atmosphere interactions and human
impacts on water partitioning

Cross-road now: Big data providing new insights at a range of scales
while also providing new types of data for models
New patterns & processes observed but clear challenges




