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Top mounted lidarunits 
Provide a 360° 3-dimensional scan 
of the environment

Side and rearfacing cameras 
Work in collaboration to construct a 

continuous view of the vehicle’s 
surroundings 

Forward facing camera array
Focus both close and far field, watching for 
braking vehicles, crossing pedestrians, 
traffic lights, and signage

Custom designed 
compute and storage 
Allow for real-time processing of 
data while a fully integrated cooling 
solution keeps components running 
optimally

360°radar 
coverage

Hardware

GPS
IMU
wheel encoders
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Planning and Model Predictive Control
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Imitation Learning 







Autonomy Software
Development and Testing Process
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Asked for up to date version from sugandha
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Active Optimization
f is an unknown expensive black-box function.
Let x∗ = argmaxx f (x).
Goal: approximately optimize f with as few experiments as possible

f (x)

x∗

x

f (x∗)



Optimizing expensive to evaluate functions 

• Tuning the hyperparameters of supervised learning algorithms 
• e.g. deep networks

• Systems requiring physical experiments (online/onboard optimization)

• Algorithms that are tested via expensive simulations 
• compute stack performance
• planner/controller parameters
• scientific model fitting



Model f as a sample from a Gaussian Process.
f (x)

0
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Maximise acquisition function ϕ t : xt = argmaxx ϕ t(x).
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x

xt = 0.828
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Active Optimization Algorithm
1. Learn model from data you have 

(including uncertainty)

2. Search the model for the best 
experiment.

3. Run the chosen experiment and 
collect a new data point.

4. While experiment budget is not 
exhausted, repeat.



Active Optimization Trials



Controlling Fusion Plasmas



• Bayesian optimization for response to instabilities
• Improved models combining data and first principles
• Beta_N and Rotation tracking with reinforcement learning



Bayesian Optimization with TRANSP for response to instabilities

Controller
Co-current Beam Power

Counter-current Beam Power

• Use TRANSP as a simulator to test effect of beam powers.
• Start 150ms before tearing mode and run until 150ms after.

• Score to maximize:

• Signals
• Use to measure pressure.
• Use as a proxy for stability.



We can learn this controller by repeatedly querying TRANSP.

Contextual Bayesian 
Optimization Algorithm

Simulator 
(TRANSP)

30 min to 
simulate 150ms

Request state of plasma 
and beam powers

Receive future plasma 
pressure and stability



Bayesian Optimization

• For our application...

• The expensive function f 
is TRANSP and returns 
pressure+stability score.

• x∗ is the best possible 
setting for beam 
powers.

Model of the Function



Offline Contextual Bayesian Optimization to Learn a Controller

Have many of these 
optimization landscapes, one 
for each state of plasma.

• Our algorithm efficiently picks which 
state of plasma to optimize for.

• This algorithm learns the best 
controller much faster than traditional 
Bayesian Optimization algorithms.

• Paper accepted at NeurIPS, a top 
machine learning conference

Char, I., Chung, Y., Neiswanger, W., Kandasamy, K., Nelson, A. O., Boyer, M., Koleman, E., 
Schneider, J., “Offline contextual bayesian optimization”, Advances in Neural Information 
Processing Systems, 2019.



Reinforcement Learning and Bayesian Optimization Successes

Deep Mind

Open AICarnegie Mellon University

Carnegie 
Mellon 

University



Building a Model

State xt, e.g. βN
State, xt+1, 
e.g. βN

Control ut, e.g. total power 
from neutral beams

Scientific First Principles
- plus heuristic 

simplifications for 
tractability

- yields a simulation or 
equations useful for 
analysis and control

Data Driven Machine 
Learning
- collect data from 

real device or 
simulation

- train a model with 
supervised learning

- use the model like 
a simulator

BOTH!?

𝑥𝑥𝑡𝑡+1 = 𝑓𝑓 𝑥𝑥𝑡𝑡,𝑢𝑢𝑡𝑡 + 𝜀𝜀



• We define a new class of model, the Neural Dynamical System, as an answer to this 
question.

• Leverage new methods of training ODE-based neural network models
• Use prior knowledge from physics to improve (1) accuracy and (2) sample complexity
• Can be used for model-predictive control.

Can we combine physical knowledge with data-driven modeling?



• Greatly improved overall accuracy using our neural dynamical system over baselines 
when we include even simple prior knowledge.

• E is stored energy, P is injected power,
T is torque, and ω is rotation.

• Model is from (Boyer et al, 
Nuclear Fusion, May 2019)

Combining data and physics knowledge for modeling a tokamak

V. Mehta, I. Char, W. Neiswanger, Y. Chung, O. Nelson, D. Boyer, E. Kolemen, J. Schneider, 
“Neural Dynamical Systems: Balancing Structure and Flexibility in Physical Prediction“, IEEE 
Conference on Decision and Control (CDC), 2021



Using the Model Offline: Reinforcement Learning
(differentiable) Model Data: sequences of states and actions

Simplified RL
1. Initialize a control policy (random, expert, imitation)
2. Generate some data (true system, model, current policy, 

exploration policy, external source, replay buffer)
3. Compute a policy gradient, δJ/δθ and update the policy
4. Repeat to step 2

(differentiable) 
Control Policy

𝑢𝑢𝑡𝑡 = 𝑔𝑔 𝑥𝑥𝑡𝑡;𝜃𝜃 𝑥𝑥𝑡𝑡+1 = 𝑓𝑓 𝑥𝑥𝑡𝑡,𝑢𝑢𝑡𝑡;𝜑𝜑 + 𝜀𝜀 D = [… , 𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡, 𝑥𝑥𝑡𝑡+1,𝑢𝑢𝑡𝑡+1, … ]

Performance Criterion

𝐽𝐽 𝜃𝜃 = 𝐸𝐸 (∑𝑡𝑡=0𝑁𝑁 𝑐𝑐(𝑥𝑥𝑡𝑡,𝑢𝑢𝑡𝑡))



Learning to Control From Data: Model Predictive Control (MPC) vs 
Reinforcement Learning (RL)

Online

Model Predictive Control (MPC)
Observe current state of the tokamak

Search for action that has most 
benefit for the next few timesteps

Model Tokamak

Tokama
k

Beforehand

Reinforcement Learning (RL)

Model
Collect experience from 
the model and find the 
best actions.

Neural Net 
Controller

Online

Neural net forward 
pass to get action

Neural Net 
Controller

Observe state



and Rotation Tracking Control Loop: Dynamics Model

Feed Forward Neural Net

Inputs (Dim = 27) Outputs (Dim = 10)
● Current signal + change in last 

200ms of:
○ density_estimate
○ li_EFIT01
○ volume_EFIT01
○ kappa_EFIT01
○ a_EFIT01
○ tri_top_EFIT01
○ tri_bot_EFIT01
○ rmagx_EFIT01
○ betan_EFIT01
○ injected power and torque
○ line average plasma rotation
● Current value of bt

● Change in power and torque 
injected for the next 200ms

● Predict change in next 
200ms for...

○ density_estimate
○ li_EFIT01
○ volume_EFIT01
○ kappa_EFIT01
○ a_EFIT01
○ tri_top_EFIT01
○ tri_bot_EFIT01
○ rmagx_EFIT01
○ betan_EFIT01
○ plasma rotation

● All signals are normalized using median and IQR



Train
(90%)

Test 
(10%)

Dataset

● 55,146 time steps 
(200ms) in dataset. 

● 1,518 different shots 
in the dataset.

● Splits made by 
splitting shots 
randomly.

Train Environment
● Test Explained Variance = 0.581

○ (Averaged Over Output Dimension)

● Used to train controller, tune PID 
coefficients, and used as the model in 
MPC

Test Environment
Treated as if it 
were the real 
environment. 
Used for 
evaluation only.

and Rotation Tracking Control Loop: Training and Evaluation



● Score is sum of normalized distance from the two targets, 
accumulated over the shot and average over the test set 
(lower is better)

and Rotation Tracking Control Loop: Results

Control Method Score
Reinforcement Learning 16.95 ± 0.33
Model Predictive Control 18.45 ± 0.26
Tuned PID Controller 18.87 ± 0.09



Test Trajectories for RL Controller Beta = Blue Rotation = Red



Test Trajectories for PID Controller Beta = Blue Rotation = Red



Summary and Next Steps

● Reinforcement Learning and Bayesian Optimization shows 
promise fro plasma control in simulation and learned plasma 
dynamics models

● Test the learned controllers on the real device

● Move from control toward scenario design
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+Rotation Tracking Task
● Additionally try to hit a target (line averaged) plasma rotation.

Inputs (Dim = 27)

● Same as before plus…

● Current value and change 
from last 200ms of..

○ Line averaged 
plasma rotation

○ tinj
● Change in tinj for next 

200ms

Outputs (Dim = 10)

● Same as before + change 
in line averaged plasma 
rotation

Inputs (Dim = 10)

● Same as before but add
○ Line averaged 

rotation
○ tinj
○ Target rotation

Output (Dim = 2)
● Desired change in pinj and 

tinj for 200ms in the future.

Changes to Dynamics Model

Changes to Controller

Test Explained Variance = 0.587

● Change in tinj bound
○ [-1.27, 1.36]

● tinj bound
○ [0.22, 6.99]
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