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Overview
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Examples of the use of ML/AI for:

• Radiological/nuclear source detection

• 3D radiation imaging and mapping

• Object detection and tracking

• Enhanced detection and localization

• Nuclear safeguards
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Evolution of Technology
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Evolution of Technology
Sensing and Computing

Performance
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Radiological/Nuclear Source Detection
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R/N Source Search
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Street Scale Block Scale City Scale

Radiological search seeks to detect and identify anomalous radiological sources with high sensitivity in 
environments ranging from street to city scale

Key Challenges:
• Short dwell times

• Weak and/or 
shielded sources

• Highly varying, 
unpredictable 
backgrounds

• Very low false 
positive rates        
(e.g. 1 in 105)
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Non-Negative Matrix Factorization
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• Decompose gamma-ray spectra into non-negative parts (components), consistent with Poisson statistics
• Components can be used to form a background model

ML and Data Fusion for Radiation Detection, Localization, and Mapping

NMF: D.D. Lee & H.S. Seung, Nature (1999), DOI: 10.1038/44565

• Components are additive, non-orthogonal, and 
lend themselves well to physical interpretation

https://doi.org/10.1038/44565


Non-Negative Matrix Factorization
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NMF: D.D. Lee & H.S. Seung, Nature (1999), DOI: 10.1038/44565 M.S. Bandstra et al., IEEE TNS (2020) 10.1109/TNS.2020.2978798

• Components are additive, non-orthogonal, and 
lend themselves well to physical interpretation

• Decompose gamma-ray spectra into non-negative parts (components), consistent with Poisson statistics
• Components can be used to form a background model

https://doi.org/10.1038/44565
https://doi.org/10.1109/TNS.2020.2978798


NMF For R/N Source Detection and Identification
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K.J. Bilton et al., IEEE TNS (2019), DOI: 10.1109/TNS.2019.2907267

• Anomaly Detection: Test incident spectrum for consistency
with background model (e.g. via Poisson deviance)

• Isotope Identification: Perform Likelihood Ratio Test between
background only and background-plus-source hypotheses

• NMF-based methods significantly
outperform other “mature”
algorithms

• Still a factor of 2 away from
statistical limit
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Neural Network Approaches
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K.J. Bilton et al., J. Nucl. Eng. (2021), DOI: 10.3390/jne2020018

• Neural Network approaches have the potential to further improve rad/nuc detection and isotope ID

ML and Data Fusion for Radiation Detection, Localization, and Mapping

NMF
Feed Forward Network
Recurrent Neural Network

Detection and ID Performance

Competition Data - DOI: 10.13139/ORNLNCCS/1597414

Example 1: RNN Based Detection and ID

• Recurrent Neural Network outperformed
NMF

Example 2: Urban Radiological Search
Competition (DOE NNSA, 2019)

See presentation by Tenzing Joshi

• Neural networks significantly
outperformed winners of a prior
national laboratory competition

https://doi.org/10.3390/jne2020018
https://doi.org/10.13139/ORNLNCCS/1597414
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3D Radiation Imaging and Mapping
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Free-Moving 3D Imaging and Mapping
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Conventional radiation imaging: 
• Static system
• Fixed coordinate system
• 2D image
• Minutes to hours
• Requires an imaging system

Block Scale

City Scale

137Cs, in a bush?
(20o, 85o)
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Free-Moving 3D Imaging and Mapping
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Conventional radiation imaging: 
• Static system
• Fixed coordinate system
• 2D image
• Minutes to hours
• Requires an imaging system

Block Scale

City Scale

Free-moving radiation imaging:
• Overcomes 1/r2 limitations and increases sensitivity 
• Enables 3D imaging
• Uses modulation by motion and detector response
• Does not require an imaging system

Requirements:
• Knowledge of detector response
• Continuous tracking of system pose

137Cs, in a bush?
(20o, 85o)

137Cs in a container
(1.1m, 2.2m, 2.5m)
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Contextually Enhanced Radiation Detectors
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3D Scene Data Fusion
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• Simultaneous Localization and Mapping and Localization (SLAM)1

algorithms provide:
I. 3D model of the environment
II. Estimate of system position and orientation

LIO-SAM: https://github.com/TixiaoShan/LIO-SAM

1 H. Durrant-Whyte & T. Bailey (2006), DOI: 10.1109/MRA.2006.1638022

ML and Data Fusion for Radiation Detection, Localization, and Mapping

https://github.com/TixiaoShan/LIO-SAM/blob/master/config/doc/paper.pdf
https://doi.org/10.1109/MRA.2006.1638022


3D Scene Data Fusion
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• Simultaneous Localization and Mapping and Localization (SLAM)1

algorithms provide:
I. 3D model of the environment
II. Estimate of system position and orientation

1 H. Durrant-Whyte & T. Bailey (2006), DOI: 10.1109/MRA.2006.1638022
5 A. Davison (2018), arXiv:1803.11288v1

• Continuous fusion of radiation data with SLAM output allows 3D mapping
and visualization of radiation field in real time 2,3,4

2 R. Barnowski et al., NIM A (2015), DOI: 10.1016/j.nima.2015.08.016
3 K. Vetter et al., Sensors (2019), DOI: 10.3390/s19112541

4 D. Hellfeld et al., Sci. Rep. (2021) DOI: 10.1038/s41598-021-99588-z

• Future directions include exploring Deep SLAM/Spatial AI5
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https://doi.org/10.1109/MRA.2006.1638022
https://arxiv.org/abs/1803.11288v1
https://doi.org/10.1016/j.nima.2015.08.016
https://doi.org/10.3390/s19112541
https://doi.org/10.1038/s41598-021-99588-z


3D Scene Data Fusion Examples
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“Nuclear Street View”
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• AI for object detection and semantic segmentation of visual imagery
• Towards prediction of radiological backgrounds from video and Lidar

“Nuclear Street View” ConceptRadMAP

RadMAP: M.S. Bandstra et al., NIM A(2016), DOI: 10.1016/j.nima.2016.09.040

https://doi.org/10.1016/j.nima.2016.09.040


“Nuclear Street View”
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• AI for object detection and semantic segmentation of visual imagery
• Towards prediction of radiological backgrounds from video and Lidar

Semantic Segmentation of VideoRadMAP



“Nuclear Street View”
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• AI for object detection and semantic segmentation of visual imagery
• Towards prediction of radiological backgrounds from video and Lidar

Semantic Segmentation of VideoRadMAP

3D Mesh with Labels Applied
Fort Indiantown Gap (FIG) 

National Guard Base



“Nuclear Street View”
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• AI for object detection and semantic segmentation of visual imagery
• Towards prediction of radiological backgrounds from video and Lidar

Semantic Segmentation of VideoRadMAP

3D Mesh with Labels Applied
Fort Indiantown Gap (FIG) 

National Guard Base

Fit to spectral data based on 3D projections of 
semantic segments

M. Salathe et al., Phy. Rev. Research (2021), DOI: 10.1103/PhysRevResearch.3.023070
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Object Detection and Tracking
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Object Detection and Tracking for Enhanced Detection 
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• Real-time object detection with video and Lidar using CNNs
• e.g. YOLO v3/v4 (video), PointPillars (Lidar)

• 3D object tracking e.g. with Kalman filter

• Attribution of radiological signals to tracked objects provides:
• Localization
• Situational awareness
• Improved detection sensitivity

M.R. Marshall et al., IEEE TNS(2020), DOI: 10.1109/TNS.2020.3047646
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Object Detection for Nuclear Material Accountancy
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• Compact, multi-sensor systems and AI algorithms can replace manual object counting and 
accountancy in nuclear safeguards and treaty verification applications

ML and Data Fusion for Radiation Detection, Localization, and Mapping

Lidar

Depth Camera INS, Computer, 
Batteries

Handle



Object Detection for Nuclear Material Accountancy
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• Efforts are underway to develop large, synthetic data sets for training and testing image-based 
detection, identification, and classification algorithms

Images: Zoe Gastelum, Sandia National Laboratories

3D CAD Model of UF6 Container Placed in Real 3D Environments 
and Rendered into 2D Images Automatically Labelled
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Some Things I Didn’t Cover…
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Distributed Sensor Networks and 5G

UAS Swarms: Data Fusion and 
Navigation Policy

Natural Language Processing and Open 
Source Analytics (Svitlana Volkova, PNNL)

ML/AI in Low Energy Nuclear Physics

Online Learning of Radiological Backgrounds and Anomalies

• Real-time fusion of radiological 
and contextual data from 
multiple systems

• Q-learning based navigation 
policy

• AR/VR for visualization and 
control

• Networked, multi-sensor 
systems for urban 
environments

• AI at the edge 
• Network data fusion
• 5G: AI-drive optimization 

of data network 

• Real-time optimization of experimental systems
• Optimization of ion sources
• Reinforcement learning for signal decomposition
• Physics-based AI for gamma-ray tracking

• Ab-initio learning of NMF background 
models

• Physics-based online updating of 
background models and anomalous 
source signatures

• Analysis of open source data to explain and 
predict radiological observations

• Analysis of publicly available information to detect, 
monitor and forecast nuclear proliferation



Summary
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• Contextual sensing, Machine Learning, and Artificial Intelligence are 
enabling entirely new capabilities for radiation detection and 
imaging

• These new capabilities have a wealth of applications in nuclear 
security, safety, decommissioning, and environmental management

• Machine Learning and Artificial Intelligence methods have never 
been more accessible

• They will continue to play a major role in advanced radiation 
detection well into the future

• e.g. sensor networks, autonomous systems



Photo Credit: Mark Bandstra, ANP
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