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Examples of the use of ML/AI for:
« Radiological/nuclear source detection

« 3D radiation imaging and mapping

« Object detection and tracking
« Enhanced detection and localization

« Nuclear safeguards
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Radiation Detection and Imaging

Performance

A

A

Selected Technology
Examples

Fluorescence & Film

Dual-
Tomography II\E/IC?I'dalg'I»'/
PET & SPECT *

CLLBC

LSO
BGO 1992 (2010)
TPC (1992)
MWPC (1982)

Si & HpGe

Geiger o Segmented
Scintillator (& CdZnTe)

.. CdZnTe & HPGe
Mller Nal(Tl) arrays detectors
e Counter (1948)
1900 1950 2000
Time
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Cloud computing + Mixed Reality

Sensing and Computing AR & VR

Performance

a

Selected Technology
Examples

Deep Learning

MS Kinect

Personal Computer

Z1, ENIAC,
“Manchester Baby”

E.g. 1,024 bits & CMOS
1,000 ops CCD sensor (active piXEl)
1880's Digital cameras sensor

(Active pixel/ CMOS)

Ranging

A 4

Time
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Radiological/Nuclear Source

Detection
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Radiological search seeks to detect and identity anomalous radiological sources with high sensitivity in
environments ranging from street to city scale

Key Challenges:
« Short dwell times

« Weak and/or
shielded sources

« Highly varying,
unpredictable
backgrounds

* Very low false
positive rates
(e.g. 1in 107

Street Scale Block Scale City Scale
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Decompose gamma-ray spectra into non-negative parts (Ccomponents), consistent with Poisson stafistics
« Components can be used to form a background model

component
spectral bins (index j7) (index k)
> —>
/;\ . . .
% spectral bins (index j)
= >
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GEJ rows are components (vy)
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rows are spectra (x;) weights matrix a;p,

« Components are additive, non-orthogonal, and
lend themselves well to physical interpretation
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« Decompose gamma-ray spectra into non-negative parts (components), consistent with Poisson statistics
« Components can be used to form a background model

o . component Nal detector data from Aerial Measurement System (AMS) at Lake Mohave, NV
spectral bins (index j7) (index k)
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rows are spectra (x;) weights matrix a;g 0 500 1000 1500 2000 2500 3000
Energy (keV)
« Components are additive, non-orthogonal, and . decreases first
lend themselves well to physical interpretation * "Nearby ferresirial” decreases later
* "Radon/cosmics/aircraft” remains approximately constant
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NMF For R/N Source Detection and Identification Rl
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. . . . . Example: Mobile Nal Detector
« Anomaly Detection: Test incident spectrum for consistency
with background model (e.g. via Poisson deviance) f”\g e
102 1 --- 13Ba Source Template
- Isotope Identification: Perform Likelihood Ratio Test between — Bockground plus BBa il
background only and background-plus-source hypotheses g , ?.-':
< ! 'f'.
"g 10! I‘J‘.J' E
Anomaly Detection Performance 8 '}
1.00 :
133 | ‘"
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100 L i ' ) !
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2 o5 137Cs outperform other “mature”
O . .
S algorithms
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o
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« Neural Network approaches have the potential to further improve rad/nuc detection and isotope ID

Example 1: RNN Based Detection and ID Example 2: Urban Radiological Search

* Recurrent Neural Network outperformed Competition (DOE NNSA, 2019)

NMF C
« Neural networks significantly
Detection and ID Performance outperformed winners of a prior
100 1 r : national laboratory competition
1 Feed Forward Network
= 801 Recurrent Neural Network L ey
@) i)
3 a 1 E I run . - - .
< 60 . x & ® X ‘ 140x186 )
a .
E . L | x Group fimes
40 - s 5 Y.
b r
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h Convolutional| ™ 1 <40
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D Radiation Imaging and Mapping

October 27th 2021

ML and Data Fusion for Radiation Detection, Localization, and Mapping



~

Free-Moving 3D Imaging and Mapping ereeef
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Conventional radiation imaging:
« Stafic system

* Fixed coordinate system

« 2D image

* Minutes to hours

* Requires an imaging system

p , -
o :
«*‘wf

\\
-

-

137Cs, in a bush?
(20°, 85°)

ang deg
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Free-Moving 3D Imaging and Mapping S|
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Conventional radiation imaging: T o 6
- Static system v o . .
 Fixed coordinate system d y < N\
- 2D image : | S J
« Minutes to hours g /o o
« Requires an imaging system N ad 20

10

03 -1 ) 1 2 3
X (m)

Free-moving radiation imaging:

« Overcomes 1/r2limitations and increases sensitivity
« Enables 3D imaging

« Uses modulation by motion and detector response
« Does notf require an imaging system

Requirements:
«  Knowledge of detector response
« Continuous tracking of system pose
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GPS/I NS, 10x10 Nal Array Hyperspectral Cameras

ead Coded Aperture
Edge Computer
ge Comp il < ED e

Visual
Camera

.

(Interchangeable)

Lidar Detectors 14 Mechanically

Cooled HPGe 16 EJ 309 Liquid Scintillators
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« Simultaneous Localization and Mapping and Localization (SLAM)]
algorithms provide:

. 3D model of the environment
II. Estimate of system position and orientation
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« Simultaneous Localization and Mapping and Localization (SLAM)]
algorithms provide:

. 3D model of the environment
II. Estimate of system position and orientation

« Continuous fusion of radiation data with SLAM output allows 3D mapping
and visualization of radiation field in real time 234
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« Future directions include exploring Deep SLAM/Spatial Al°
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3D Scene Data Fusion Examples 2l
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Source localization in concrete building Chernobyl claw

194 0Ci (252 Point-source quantification in container stack
530 ui Ba-133
350G Cs- 137

v - -_ Wide-area mapping
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» Al for object detection and semantic segmentation of visual imagery
« Towards prediction of radiological backgrounds from video and Lidar

RadMAP “Nuclear Street View" Concept

Predicted Gamma-Ray Spectrum
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» Al for object detection and semantic segmentation of visual imagery
« Towards prediction of radiological backgrounds from video and Lidar

RadMAP Semantic Segmentation of Video
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» Al for object detection and semantic segmentation of visual imagery
« Towards prediction of radiological backgrounds from video and Lidar

RadMAP Semantic Segmentation of Video

3D Mesh with Lob(_els 'App'lied

Fort Indiantown Gap (FIG)
National Guard Base

AR s N
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» Al for object detection and semantic segmentation of visual imagery
« Towards prediction of radiological backgrounds from video and Lidar

RadMAP Semantic Segmentation of Video

Fit to spectral data based on 3D projections of
semantic segments
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Object Detection and Tracking
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Object Detection and Tracking for Enhanced Detection Eﬂl

Real-fime object detection with video and Lidar using CNNs
« e.9. YOLO v3/v4 (video), PointPillars (Lidar)

« 3D object tracking e.g. with Kalman filter

Video

- Atffribution of radiological signals to fracked objects provides:

 Localization
« Situational awareness
« Improved detection sensitivity

il Top Down View

. )
l 200 200
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LA Track 5 Trac rack 37 K/
O . (%] Track 7 I ' (%) Track 44 A (/ |
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Object Detection for Nuclear Material Accountancy =1
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« Compact, multi-sensor systems and Al algorithms can replace manual object counting and
accountancy in nuclear safeguards and treaty verification applications

Lidar Handle

INS, Computer,

Depth Camera !
Batteries
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Object Detection for Nuclear Material Accountancy =i
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« Efforts are underway to develop large, synthetic data sets for training and testing image-based
detection, identification, and classification algorithms

3D CAD Model of UF6 Container Placed in Redl 3.D Environments
, B , and Rendered into 2D Images

> o u . T
= . Y .

Automatically Labelled

Sandia
National
Laboratories
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Some Things | Didn't Cover...

Distributed Sensor Networks and 5G

« Networked, multi-sensor
systems for urban
environments

« Al atthe edge
« Network data fusion

« 5G: Al-drive optimization
of data network

Online Learning of Radiological Backgrounds and Anomalies

* Ab-initio learning of NMF background

models

* Physics-based online updating of
background models and anomalous
source signatures

ML/Al in Low Energy Nuclear Physics

Real-time optimization of experimental systems
Optimization of ion sources

Reinforcement learning for signal decomposition
Physics-based Al for gamma-ray tracking

~

reerrrer “'I

S
Natural Language Processing and Open
Source Analytics (Svitlana Volkova, PNNL)

* Analysis of open source data to explain and
predict radiological observations

* Analysis of publicly available information to detect,
monitor and forecast nuclear proliferation

ATB+ sciontitc pubscations 104 pubic available information (PAI) sources
- »-E:_?:_’_ = " = == ﬁ
i ® = g%}z
A e ==
) Pusicosa
UAS Swarms: Data Fusion and T
Navigation Policy > = z

« Real-time fusion of radiological
and contextual data from
multiple systems

*  Q-learning based navigation
policy

« AR/VR for visualization and
control
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« Contextual sensing, Machine Learning, and Artificial Intelligence are
enabling entirely new capabilities for radiation detection and
Imaging

* These new capabillities have a wealth of applications in nuclear
security, safety, decommissioning, and environmental management

 Machine Learning and Artificial Intelligence methods have never
been more accessible

* They will continue to play a major role in advanced radiation
detection well intfo the future
¢ €.Qg. sensor networks, autonomous systems
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