

Use of MARTe2 to enhance the JET Real-Time Central Controller.

Chris I. Stuart 5th July 2021

IAEA 13th Technical Meeting on Plasma Control Systems, Data Management and Remote Experiments in Fusion Research

ntract for the Operation of the JET Facilities Co-Funded by Euratom s work was funded by the RCUK Energy Programme [Grant number EP/T012250/1] CULHAM CENTRED

Talk Outline

- Context (briefly)
 - Many of us are working on the same problems, with variations.
 - The abstractions are common, with minor vocabulary differences.
 - The implementations appear to differ more than they really do.
 - The meta data and reuse problems are perhaps most interesting?

• JET Real-Time Central Controller

- What it is, how we use it, why we need to upgrade it.
- Constraints and opportunities.
- Design selection : MARTe2
- Proof of concept > Demonstration > Deployment (at a critical point in JET lifetime)
- Integration for the future (EPICS, SDN, MDS+, Python) over JET legacy

Tools and the Future

- Importance of adopting modern methods.
- Evolving a platform for the era of fusion delivery is important and valuable.
- Inspiring the next generation of innovators in the field, likewise.

Big Picture: JET Operations Workflow

C40 Scientific goals, PTs approval schedule & Timeline

- T pulses (C39/T, C40) approval schedule (deadlines for PTs submission and JPEC approval)
- C40 Scientific goals M, with number of allocated pulses, T-consumption, T-gas used (update: 11/April/2021)
 C40A timeline cycles 5 & 6 M(update: 18/June/2021)

IAEA 13th Technical Meeting on Plasma Co and Remote Experiments in Fusion Resear

X Top Level DC Overview : DAP 99137

Local and Global Control

×

UK Atomic

Plasma Control Systems

UK Atomic Energy Authority

IAEA 13th Technical Meeting on Plasma Control Systems, Data Management and Remote Experiments in Fusion Research. Culham, 5-8 July 2021

Talk Outline

- Context (briefly)
 - Many of us are working on the same problems, with variations.
 - The abstractions are common, with minor vocabulary differences.
 - The implementations appear to differ more than they really do.
 - The meta data and reuse problems are perhaps most interesting?
- JET Real-Time Central Controller
 - What it is, how we use it, why we need to upgrade it.
 - Constraints and opportunities.
 - Design selection : MARTe2
 - Proof of concept > Demonstration > Deployment (at a critical point in JET lifetime)

- Integration for the future (EPICS, SDN, MDS+, Python) over JET legacy
- Tools and the Future
 - Importance of adopting modern methods.
 - Evolving a platform for the era of fusion delivery is important and valuable.
 - Inspiring the next generation of innovators in the field, likewise.

IN	PUTS	
Label	Type	Status
Signal input	Analogue	Essential
Slave input	Analogue	Optional
Enable input	Digital	Optional
Anti-Windup input	Digital	Optional
OU	IPUTS	
Analogue	and Digital.	
PARA	METERS	
Label	Type	Template
Invert enable	Integer	YesNo
Invert anti-windup	Integer	YesNo
Proportional gain	Real	Real
Integration Ti	Real	Real
	D1	Real
Derivative Td	Real	Real

Signal Signal Activities: Scale Scale Scale

This algorithm implements an advanced PID controller transfer function:

$$G_{pid}(s) = Gain\left(1 + \frac{1}{sT_i} + \frac{sT_d}{1 + \frac{sT_d}{D_{range}}}\right)$$
(1.6)

RTCC System Technology

- 1996-2020 Bespoke C application
- VME/PPC single core embedded
- Incremental changes/optimisations
- Essential operations system

RTCC Operator Support

- Network editor / rapid test facility
- Database of algorithms/signals
- Specialist training required
- Expert with physics/control skills

UK Atomic Energy Authority

Proportional-Integral-Derivative Controller

RTCC System Technology

- 1996-2020 Bespoke C application
- VME/PPC single core embedded
- Incremental changes/optimisations
- Essential operations system

RTCC Operator Support

Network editor / rapid test facility

UK Atomic

- Database of algorithms/signals
- Specialist training required
- Expert with physics/control skills

RTCC System Technology

- 1996-2020 Bespoke C application
- VME/PPC single core embedded
- Incremental changes/optimisations
- Essential operations system

RTCC Operator Support

Network editor / rapid test facility

X

UK Atomic

- Database of algorithms/signals
- Specialist training required
- Expert with physics/control skills

- Gas modulation (M13-24, M15-16)
- ICWC pressure control
- Sawtooth control with ICRH
- ELM frequency control with pacing pellets
- Radiation fraction/seeding species concentration control with impurity GIM
- Combined H factor and radiation control
- Neutron rate monitoring
- Alpha particle heating simulation
- ITB controls

PDO example control tasks

- Total energy protection (JOI 1.1a)
- Radiation peaking monitoring using the bolometer
- BetaN control with NBI
- ELM frequency as a safety net for pellets with gas (M15-01)
- ELM frequency control with gas (M15-02)
- Detachment control using Langmuir probes with N2
- He3 concentration control with gas

RTCC System Technology

- 1996-2020 Bespoke C application
- VME/PPC single core embedded
- Incremental changes/optimisations
- Essential operations system

RTCC Operator Support

- Network editor / rapid test facility
- Database of algorithms/signals
- Specialist training required
- Expert with physics/control skills

- 14 fully qualified PDOs
- 11 trainees
- Training program
- Roster
- Continuous improvement cycle

Recent issues:

- Missed real-time cycles
- Incomplete data collection

Problem: CPU and RAM

RTCC System Technology

- 1996-2020 Bespoke C application
- VME/PPC single core embedded
- Incremental changes/optimisations
- Essential operations system

Network editor / rapid test facility ٠

Check actuator

limits

- Database of algorithms/signals
- Specialist training required ۲
- Expert with physics/control skills ۲

Set up

references/ ffwd

waveforms

Refine with SL

Talk Outline

- Context (briefly)
 - Many of us are working on the same problems, with variations.
 - The abstractions are common, with minor vocabulary differences.
 - The implementations appear to differ more than they really do.
 - The meta data and reuse problems are perhaps most interesting?

• JET Real-Time Central Controller

- What it is, how we use it, why we need to upgrade it.
- Constraints and opportunities.
- Design selection : MARTe2
- Proof of concept > Demonstration > Deployment (at a critical point in JET lifetime)
- Integration for the future (EPICS, SDN, MDS+, Python) over JET legacy
- Tools and the Future
 - Importance of adopting modern methods.
 - Evolving a platform for the era of fusion delivery is important and valuable.
 - Inspiring the next generation of innovators in the field, likewise.

RTCC++

CPU upgrade : from 1GHz single core PPC -> 4 Core 2.4GHz i7 Memory upgrade : from 500MB to 32GB Connectivity : 100Mbps ethernet + 155 Mbps ATM to Dual Gbps ethernet/SDN OS : VxWorks 5.x running in kernel mode to Linux 5.x using core isolation RT tuning : RT PREEMPT patches within Centos or Rocky or Custom Yocto Compiler : from gcc 3.4.3 to gcc 4.8.5 (Centos7 – possibly above TBA) Software stack : From bespoke C to MARTe 2.0 DevOps : from none to git + CI + unit tests + MARTe 2 QA + SonarQube

System Upgrade Requirements

- Capacity++ : modern hardware
- Multicore PC, RT Linux, C++
- Feasible implementation time/cost
- Leave future exploitation open

Operator Requirements

QA to modern standards/DevOps

UK Atomic Enerav

- Backwards compatibility
- Better usability
- Better maintainability
- Lower cost/risk of new features

RTCC++

System Upgrade Requirements

- Capacity++: modern hardware
- Multicore PC, RT Linux, C++
- Feasible implementation time/cost
- Leave future exploitation open

Operator Requirements

QA to modern standards/DevOps

х¥,

- Backwards compatibility .
- Better usability •
- Better maintainability
- Lower cost/risk of new features

End User
ToolsCore
ToolsMVPSmall Team Ad
Hoc SolutionsTraining
ExamplesCore Libs

UK Atomic Energy Authority

consensus: "just" need nice powerful tools

System Upgrade Requirements

- Capacity++ : modern hardware
- Multicore PC, RT Linux, C++
- Feasible implementation time/cost
- Leave future exploitation open

- QA to modern standards/DevOps
- Backwards compatibility
- Better usability
- Better maintainability
- Lower cost/risk of new features

Tools : Surely just MATLAB/Simulink ?

UK Atomic Energy Authority

Mono-culture risks

- Fully open source / Fully proprietary : all extremes have problems.
- What is capital expenditure? What is a consumable ?
- What is the total cost and risk of ownership ?
- Mitigate with good architectures and inter-operability.
- Design for high levels of parallelism and AI in the loop (Google/TAE).
- IP Management.

Talk Outline

- Context (briefly)
 - Many of us are working on the same problems, with variations.
 - The abstractions are common, with minor vocabulary differences.
 - The implementations appear to differ more than they really do.
 - The meta data and reuse problems are perhaps most interesting?

• JET Real-Time Central Controller

- What it is, how we use it, why we need to upgrade it.
- Constraints and opportunities.
- Design selection : MARTe2
- Proof of concept > Demonstration > Deployment (at a critical point in JET lifetime)

UK Atomic Energy Authority

- Integration for the future (EPICS, SDN, MDS+, Python) over JET legacy
- Tools and the Future
 - Importance of adopting modern methods.
 - Evolving a platform for the era of fusion delivery is important and valuable.
 - Inspiring the next generation of innovators in the field, likewise.

IAEA 13th Technical Meeting on Plasma Control Systems, Data Management and Remote Experiments in Fusion Research. Culham, 5-8 July 2021

System Upgrade Requirements

- Capacity++ : modern hardware
- Multicore PC, RT Linux, C++
- Feasible implementation time/cost
- Leave future exploitation open

- QA to modern standards/DevOps
- Backwards compatibility
- Better usability
- Better maintainability
- Lower cost/risk of new features

Reuse : Ability to replay successful configurations from ~100k pulses

UK Atomic Energy Authority

Search for	a DAP for	r pulses fi	rom 9666	0 to 99141	(C38B) th	nat match	criteria						2	🛛 🗙 DisplayDap :	DAP to display	· · · · · · · · · · · · · · · · · · ·
Dismiss or	do somethin	g else Sa	arch DAPs	Pulse Summa	ny Special I	Functions						Search	List	Types	Periods	DAPs
Select puise ra	nge, use cal	lendar or a	pre-define	ed period or	· Specif	fy a pulse list	: file									
	This Sessio	n Own	Period	Calendar	poch Year	Restart	Campaign	Fro	n 96660	To 9914	1 C38B			Epoch	→ C40	△ 009914
'ou can build	our search	match crit	eria. Some	common o	nes are pro	vided here a	at no extra	cost.						Year	C39T	009914
Session	Session	PulseTypes	Systems	Day/Month	People	Desc	M013	RTCC	MATH	l				Campaign	С39Н	009913
Pre-Pulse	PPCC	lp	PF Modes	TF Modes	TF max	TF Chillers	Gas/Gis	DMVs	Est MW/MJ	Grid				Restart	C39D	009913
Protection	Inputs	PTN In	RTPS In	Outputs	RTPS 1st	RTPS 2nd	RTPS 3rd	RTPS 4th	RTPS 5th	RTPS 6th	Outcome	SegDegC		Library	DTR	009913
Ferminations	PulseEvents					0K	hodA							PM	C38C	009913
Select a categor You can also se					king and sel	lectina "Crite	ria for seam	hina or listir	na DAPs"					Search	C38B	009913
TCC Controls	\$\$1	ss2	ssa	554	PP1	992	PP3	PP4	NG1	N£12	HD3	H84			C38	009913
	RFG1	RFG2	RFG3	RFG4	RFFA	RFF8	RFFC	RFFD	REMA	REMB					C36B	009913
	1.811	1.82	1.813	TAE	PDF1	P052	GINA	GIMB	G BAC						C37	009913
	AND OR	HOT (- NE	GATE BR.		IDO				-					C36r	009913
Match pulses	Reset					SS1 or S	S2 or SS3 or	SS4					Edit		C361	009913
ress Search o	nce you hav	ve selected	some crit	eria. You ca	in change s	earch perio	d or criteri:	a at any tim	ie.						C35	009912
Search	List	Re	set search fro	mbeginning											C34	009912
															C33	009912
															- C31	009912
98094 98096	Jotter	Dashbo	ard Wei	o Summary	Chain1 Su	immary Ar	nalyse Pulse	e (Text)	Analyse F	ulse (Graph	nic)					
Dismiss or	do somethin	g else 🛛 Sa	arch DAPs	Pulse Summa	ny Special I	Functions						Search	List			
														DAP Selection	on:	
														Campaign/C4	0/0099139	

576 pulses in C38 (out of 2481)

System Upgrade Requirements

- Capacity++ : modern hardware
- Multicore PC, RT Linux, C++
- Feasible implementation time/cost
- Leave future exploitation open

- QA to modern standards/DevOps
- Backwards compatibility
- Better usability
- Better maintainability
- Lower cost/risk of new features

better expressivity whether in C++ or configuration DSL

System Upgrade Requirements

- Capacity++ : modern hardware
- Multicore PC, RT Linux, C++
- Feasible implementation time/cost
- Leave future exploitation open

- QA to modern standards/DevOps
- Backwards compatibility
- Better usability
- Better maintainability
- Lower cost/risk of new features

New Generation Tools

System Upgrade Requirements

- Capacity++ : modern hardware
- Multicore PC, RT Linux, C++
- Feasible implementation time/cost
- Leave future exploitation open

Operator Requirements

- QA to modern standards/DevOps
- Backwards compatibility
- Better usability
- Better maintainability
- Lower cost/risk of new features

System Upgrade Requirements

- Capacity++ : modern hardware
- Multicore PC, RT Linux, C++
- Feasible implementation time/cost
- Leave future exploitation open

- QA to modern standards/DevOps
- Backwards compatibility
- Better usability
- Better maintainability
- Lower cost/risk of new features

System Upgrade Requirements

- Capacity++ : modern hardware
- Multicore PC, RT Linux, C++
- Feasible implementation time/cost
- Leave future exploitation open

- QA to modern standards/DevOps
- Backwards compatibility
- Better usability
- Better maintainability
- Lower cost/risk of new features

Talk Outline

- Context (briefly)
 - Many of us are working on the same problems, with variations.
 - The abstractions are common, with minor vocabulary differences.
 - The implementations appear to differ more than they really do.
 - The meta data and reuse problems are perhaps most interesting?
- JET Real-Time Central Controller
 - What it is, how we use it, why we need to upgrade it.
 - Constraints and opportunities.
 - Design selection : MARTe2
 - Proof of concept > Demonstration > Deployment (at a critical point in JET lifetime)
 - Integration for the future (EPICS, SDN, MDS+, Python) over JET legacy

Tools and the Future

- Importance of adopting modern methods.
- Evolving a platform for the era of fusion delivery is important and valuable.
- Inspiring the next generation of innovators in the field, likewise.

X

UK Atomic

Energy

Authority

Project Roadmap

Phase 1: Feasibility : (a) Proof Of Concept (b) PrototypePhase 2: Deploy dual servers operating parasitically but not controllingPhase 3: Switch to RTCC2 for routine operations (increased capacity)Phase 4: Iteratively add more functionality, staged on the live test server.

Energy Authority

X

UK Atomic

Project Roadmap

UK Atomic Energy Authority

RTCC2 cluster : live / live test

Project Roadmap

UK Atomic Energy Authority

Project Roadmap: Future ?

UK Atomic Energy Authority

STEP (Spherical Tokamak for Energy Production): Designing the future of sustainable power

Conclusions & Future Work : TBA/WIP

- We are upgrading a core JET PCS tool
- 4 Phases (like all successful projects)
- Using latest methods
- Aligning with community standard technologies.
- Optimistic of collectively removing barriers to better science in this area.
- Hoping to work more closely with old friends and new partners as the era of fusion delivery progresses.

Acknowledgements

RTCC2 team

- Adam Stephen
- Alex Goodyear
- Chris Stuart

- Daniel Collishaw-Schepman
- Daniel Valcarcel
- Mark Anderton

- Nicoletta Petrella
- Peter Fox
- Rashed Sarwar

Thanks for Listening. Questions? Discussion (now and after please?)

The views and opinions expressed do not necessarily reflect those of UKAEA and Fusion for Energy which are not liable for any use that may be made of the information contained herein.

This work was funded jointly by the RCUK Energy Programme and by Fusion for Energy. To obtain further information underlying this paper, whose release may be subject to commercial restrictions, please contact PublicationsManager@ccfe.ac.uk.

This work has been carried out within the framework of the Contract for the Operation of the JET Facilities and has received funding from the European Union's Horizon 2020 research and innovation programme. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

