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q Experimental nuclear fusion devices have enormous databases

Introduction

A simple shot of few seconds can 
generate huge quantity of data:

• TJ-II device has +1000 channels 
of measurements.

• A discharge in JET can take a 
couple of seconds (10 GB/shot. 
around 100 TB/year).

It is estimated that only 10% of this data is analyzed!



q Experimental nuclear fusion devices have enormous databases

Introduction

ITER could generate 1 TB/shot. around 1 PB/year.
Machine learning algorithms requires data to work, but we can not wait 

until collect all the data to, for example, create disruption predictors!



q Learning from “few” samples could involve:

q Train predictors/classifiers from scratch under data scarce conditions. A 
reinforcement learning approach. Discriminative modeling. 
q Reinforcement learning (RL) uses a reward function to build the discriminative model 

(classifier). RL can be used to weight different features to classify the input data. The 
more data feed the model the more accuracy we have.

Vega, J., Murari, A., Dormido-Canto, S., Moreno, R., Pereira, A., Acero, A., & JET-EFDA Contributors. (2014). Adaptive high 
learning rate probabilistic disruption predictors from scratch for the next generation of tokamaks. Nuclear Fusion, 54(12), 
123001.

Dormido-Canto, S., Vega, J., Ramírez, J. M., Murari, A., Moreno, R., López, J. M., ... & JET-EFDA Contributors. (2013). 
Development of an efficient real-time disruption predictor from scratch on JET and implications for ITER. Nuclear 
Fusion, 53(11), 113001.

q Generate new samples following the training data distribution. Deep 
learning models to generate realistic new data. Generative modeling.

Introduction



q Discriminative modeling

Background

• A well-known model to predict/classify an observation (painting)
• The training data is used to learn a model (discriminative model)
• Each sample/observation has a label (1/0 means yes/no)
• Even if we were able to build a perfect discriminative model, it would 

still have no idea how to create an observation (painting)

Is a Van Gogh painting?



q Generative modeling

Background

• A generative model mimics the unknown probabilistic distribution that
explains each observation (painting)

• The training data is used to learn a model (generative model)
• No label is needed (unsupervised learning)
• The model generates new and distinct observations that look as if they 

have been included in the original training set

a Van Gogh painting



q Generative modeling framework

Background

• We have a dataset of observations X
• We assume that the observations have been generated according to

some unknown probabilistic distribution
• A generative model tries to mimic the unknown distribution. If

we success, we can sample from the model to generate new
observations

• A model successes when:
– It can generate examples that seems to have the same unknown distribution

that the training dataset
– It can generate examples that are suitable different from the observations

in the training dataset



Generative modeling: Latent space
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Instead of trying to model high-dimensional
space directly, we should describe each
observation in the traingin set using a low-
dimensional latent space and learn a
mapping function (f) to go from latent to
original space (generating a new
observation).

Mapping function f can be
obtained with ML/DL
algorithms



Generative modeling: Latent space



q Autoencoder (AE)

Generative modeling: Autoencoder
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It adjusts the bias and weights to 
learn a function in an unsupervised

way.

AE tries to learn an approximation 
to the identity function, so it 

outputs something similar to its 
input.

Placing constraints on the network, 
such as by limiting the number of 

hidden units, we can discover 
interesting structure about the data. 

The network is forced to learn a 
“compressed” representation of the 

input.
Farias, G., et al. (2016). Automatic feature extraction in large fusion databases by using deep learning approach. Fusion Engineering and Design, Volume
112, Pages 979–983.

Farias, G., et al. (2018). Applying deep learning for improving image classification in Nuclear Fusion Devices. IEEE Access, vol. 6, pp. 72345–72356.



q Autoencoder (AE) Cost Function

Generative modeling: Autoencoder
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Farias, G., et al. (2018). Applying deep learning for improving image classification in Nuclear Fusion Devices. IEEE Access, vol. 6, pp. 72345–72356.



TJ-II Thomson Scattering diagnostic

The Thomson Scattering (TS)
diagnostic of the TJ-II stellarator
provides temperature and density
profiles.

The diagnostic acquires five types of
images (spectra of laser light
scattered by plasma): CCD camera
background (BKG), measurement of
stray light without plasma (STR),
during electron cyclotron resonant
heating (ECH), during neutral beam
injection (NBI), and after reaching
the cut-off density during electron
cyclotron resonant heating (COF).



TJ-II Thomson Scattering diagnostic

BKG STR
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TJ-II Thomson Scattering diagnostic
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TJ-II Thomson Scattering diagnostic

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

5 10 15 20 25

10

20

30

training dataset (242 samples)



TJ-II Thomson Scattering diagnostic

Autoencoder (variational)
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TJ-II Thomson Scattering diagnostic

Some examples of reconstruction

Original Reconstruted Original Reconstruted



TJ-II Thomson Scattering diagnostic

Some examples of generated TS images
Generated samples of TS images

COF

ECH



q Datasets are essential for machine learning algorithms
q Under scarce conditions we can train models from scratch
q Sometimes we could need to generate new and realistic data.

q AEs are a simple approach to generate new data.

q Generative adversarial networks (GANs)

Summary – Discussion
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