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Resonant Magnetic Perturbations (RMPs) used to mitigate

ELMs cause fast ion transport

* 3D fields lead energetic particle (EP) orbits to be lost to the vessel walls
— Losses from RMPs seen on DIII-D [1], AUG [2], KSTAR [3], and others

* Losses depend on applied

perturbation spectra [4] D e
* Plasma response to external 3D = { |
fields can magnify or shield | | L e | |
perturbations [5,6] B ”*”;'l Uu»“
— Response amplitudes often A ke o o — Ml o0 o s .';""."‘l;‘_';’.f 1 -

6.0En, (10" m™

have strong dependence on [,

5.0 0.6
°
4.0 «! :
A 30.0
1
S Time (s) 2
[1] M A Van Zeeland et al 2015 Nucl. Fusion 55 073028 [4] K He et al 2021 Nucl. Fusion 61 016009
[2] M Garcia-Munoz et al 2013 Plasma Phys. Confrol. Fusion 55 124014 [5] H Reimerdes et al 2004 Phys. Rev. Left. 93 135002

[3] KKim et al 2018 Phys. Plasmas 25 122511 [6] N C Logan et al 2016 Phys. Plasmas 23 056110 Gage |IAEA 21



 Background Information
* Experimental ,, Scan on DIII-D
e Simulations of L- and H-mode Losses
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Internal RMP coils on DIII-D operate upper and lower coils

independently to include a phase shift
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The Light lon Beam Probe (LIBP) technique [1] uses neutral

beam prompt loss to study effects of magnetic perturbations

Fast lon Loss Detectors (FILDs) on DIII- 10 Strong Mode Amp.

D !2,3] measure Io:sses at the ol Large Kick
midplane and a slightly lower |
poloidal location 5 10 :
e Beam modu.lahon u§ed to ensure only § 8} Weak Mode Amp.
prompt loss is used in analysis = | . \l
9o '
 Method relates loss fluctuations to T Sf Small Kick
kick size from perturbation [1] S 41
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b
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* Experimental ,, Scan on DIII-D
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Experiment set up to scan RMP losses over range of 8,
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e Discharges transition from L-
to H-mode
— Current adjusted to align

losses with FILD af L- to H-
mode transition

e RMP coils set in n=1
perturbation with A¢p = 240
— Other experiments cover

more B, and A¢ values

* Probing beam (Co-injection)
at ~2 MW across transition

e Diagnostic loops at
midplane measure plasma
response
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Synchronous analysis of midplane magnetic probe data

measures the plasma’s response to the applied RMPs [1,2]
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Plasma response is suppressed at higher g,, up to a threshold

for poloidal field in A¢p = 240 spectrum

e Previous results from DIII-D show that plasma response can have a significant
effect on NBI loss levels [1]
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Plasma response is suppressed at higher g,, up to a threshold

for poloidal field in A¢p = 240 spectrum

e Previous results from DIII-D show that plasma response can have a significant
effect on NBI loss levels [1]
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ELM subiraction allows for sinusoidal fitting of FILD data in H-

mode analysis

e Several sinusoidal fits are applied in
Ft to L-mode FILD Signal __ | the time ranges of interest for error
estimation

e Simplified ELM detection model
allows for determining average ELM
signal in FILD data
— Not all ELMs are able to be removed,

leading to larger errors than L-mode
analysis

 Beam modulation used for
background subtraction
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ELM subtraction allows for sinusoidal fitting of midplane FILD

data in H-mode analysis

e Several sinusoidal fits are applied in
the time ranges of interest for error
estimation

e Simplified ELM detection model

allows for determining average ELM
o signal in FILD data

— Not all ELMs are able to be removed,
0.16 l | l ' Iecding to larger errors than L-mode
, 4 'l‘ ANLY LUE l 1 analysis

| « Beam modulation used for
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Shielded plasma response in H-mode doesn’t suppress AF/F

e Comparing 30L L-mode and H-

Magnetic measurements normalized to coil current

mOde: = +E%}- 30L L-mode
~ 62% increase in AF /F from L- to H- ¢ o otk
mode 1.6
— 34% decrease in B, from L- to H-
mode 12 |
— 50% decrease in B, from L- to H- "
mode ) -
* Consistent with simulations of RMP i
induced EP losses on EAST [1] o A

— Found plasma response shielding
reduced magnetic island size, but |
large fast ion orbits see enough of 0202 0.0 0.2 0.4 o6 0.8
the field to be lost B_p (GAA}
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Outline

 Simulations of L- and H-mode Losses
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Experimental RMPs are recreated to simulate experimental

conditions

« M3D-C1[1] calculates both the vacuum 3D 154428 L-mode Plasma Response Magnitude (G)
fields and plasma response e

— Includes n=1,5,7,11,13 to reconstruct physical
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Experimental RMPs are recreated to simulate experimental

conditions

« M3D-C1[1] calculates both the vacuum 3D 154428 L-mode Plasma Response Magnitude (G)
fields and plasma response e

— Includes n=1,5,7,11,13 to reconstruct physical
coils
 Magnetic response in H-mode roughly 10% 0.5
lower near wall at midplane

 Beam distribution of markers followed through
fields in ASCOTS5 [2]

— Beam deposition distribution followed for a full
poloidal orbit (prompt loss)

— Simulate in 2D before 3D to filter out ions lost by
the equilibrium fields
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RMP induced losses are concentrated in outer midplane poris

and at the vessel floor

 Similar loss patterns seen in simulations on EAST [1]
— EAST losses to low field side are found to be resonant with the RMP
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RMP induced losses are concentrated in outer midplane poris

and at the vessel floor

 Birth locations indicate a large particle displacement due to RMP that does not
decrease in H-mode

L-mode RMP Loss lonization Locations H-mode RMP Loss lonization Locations

\\\
~
-~
~
-~
-~
~
=
-~ }
~ 40
~
~
~
~
~

60

0.75 0.75
L 50
0.50 0.50
L 30
0.25 0.25
E o0.00 E o0.00
N N
-0.25 -0.25
-0.50 -0.50
-0.75 -0.75
-1.00 -1.00
1.4 1.6 1.8 2.0 2.2 1.4 1.6 1.8 2.0 2.2

Gage IAEA 21



Simulated losses align with measurements from FILDs

* Both L- and H-mode losses seen in 600 -
experiment entered FILDs with pitch ['-m%dfe AV\[')QF;'_C;H?
angles around 0.4, which is consistent ooy | LOSS FIICh Disimution
with the simulated losses at the 400 -
midplane ol
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Simulated losses align with measurements from FILDs

* Both L- and H-mode losses seen in Phase of L-mode losses
experiment entered FILDs with pitch | | " Experimental
angles around 0.6, which is consistent 320} — Ao
with the simulated losses at the
midplane f \'ﬂ

 Phase of L-mode losses with respect T A
to coil currents is slightly shifted (~40
degrees) with respect to experiment
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Summary

e DIlI-D experiments show suppression in plasma response to n=1 A¢p = 240 RMPs
in H-mode

— At very high B,, the poloidal field begins to rapidly increase for nearly all RMP spectra
e Fast ion kick size is not diminished as midplane plasma response decreases

— Agrees with theory that large orbit sizes allow for fast ions 1o be affected and lost to
RMPs over a wide range of plasma response levels [1]

e Simulations of DIlI-D experiments find that losses from co-injected NBI are
concenirated at the outer midplane in diagnostic ports and at the vessel floor

e Losses impacting the midplane are born well inside the LCFS

[1] KHe et al 2021 Nucl. Fusion 61 016009 Gage |IAEA 21



BACKUP SLIDES
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Density fluctuations due to RMPs do not have a significant

effect on losses in these shofts

Expt. Bremsstrahlung I-coil

* Previous modelling of n=2 RMPs on DIII-D
have found fluctuation in losses due to 1600
periurbed edge densities within the level o

I

statistical noise [1] e =
— This was with edge fluctuation on order 1cm 1200
* Density fluctuations effect strongestathigh 2z &
gradient edge o 10008
—

— lons well within LCFS not strongly affected
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Features in the plasma response measurements

 Plasma response expected to be

strongest when applied poloidal Plasma Response Poloidal Field

2.0

spectrum couples with kink mode B0 N
structure [1] | s A, = 180 '::'.':.";}"g*_' ]

. . Y lleee Ay=240 > ) ‘l.. .‘.
— Coupling also depends on g95, which ese By=300 ool ten »*-.:

may be important in shielding effect

— Amplification and shielding components
may be separate [2]

* Lack of B, threshold in B, may be due | g.

12

B, (G/KA)

to geometry of measurement coils 0a| ¥ 2.

— Radial coils surround midplane ports, ¢
while small poloidal coils are more like - g, : . _
point measurements = o8 i) “ 3'2

[1] M J Lanctot et al 2010 Physics of Plasmas 17 030701
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DIlI-D FILDs act as magnetic specirometers for lost ions

e CCD camera framerate of ~100Hz can be i< de Cf)i:;{;;)gg;,r
used to determine phase space of losses, b i Mirrogr/ :
but the PMT data is better for fitting o 25 Hz Grapbite
. r—
dqtq r— Iy u: -

e wnarw > [E
<> Beam (CCD
. Linear Splitter Camera
Translator Cube gand Lens

— Especially true for H-mode, where ELM
subfraction is necessary
e Losses in these experiments were only
collected in the midplane probe for the
co-lp injected beams

— Signal was seen in the lower probe oy

Ion Orbits Reaching Scintillator
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