Experimental study of RMP induced fast-ion transport using FIDA spectroscopy at the ASDEX Upgrade tokamak

A. Jansen van Vuuren

Motivation

- RMPs break the axisymmetry of tokamak fields in order to mitigate the presence edge localised modes

- RMPs are know to cause enhanced fast-ion losses [1,2]

Motivation

• RMPs break the axisymmetry of tokamak fields in order to mitigate the presence edge localised modes

• RMPs are know to cause enhanced fast-ion losses [1,2]

• It has been found that a edge resonant transport layer (ERTL) is induced [3]

Motivation

- RMPs break the axisymmetry of tokamak fields in order to mitigate the presence edge localised modes

- RMPs are know to cause enhanced fast-ion losses [1, 2]

- It has been found that a edge resonant transport layer (ERTL) is induced [3]

- Use FIDA spectroscopy to determine the:
 - Radial extent of fast-ion density profile changes

Motivation

- RMPs break the axisymmetry of tokamak fields in order to mitigate the presence edge localised modes

- RMPs are known to cause enhanced fast-ion losses [1,2]

- It has been found that a edge resonant transport layer (ERTL) is induced [3]

- Use FIDA spectroscopy to determine the:
 - Radial extent of fast-ion density profile changes
 - Change in the fast-ion content

Outline

1. Overview of experiments performed

2. Analyses and modelling of experimental results

3. Conclusion and outlook
Outline

1. Overview of experiments performed

2. Analyses and modelling of experimental results

3. Conclusion and outlook
FIDA spectroscopy measures Doppler shifted emission from fast particles

- Fast-ion D-alpha (FIDA) spectroscopy [1] relies on CX-reactions of fast-ions with donor neutrals:

\[
\text{D}^+_{\text{fast}} + D_0 \rightarrow D^0_{\text{fast}} + D^+
\]

FIDA spectroscopy measures Doppler shifted emission from fast particles

- Fast-ion D-alpha (FIDA) spectroscopy [1] relies on CX-reactions of fast-ions with donor neutrals:

\[\text{D}^+_{\text{fast}} + \text{D}_0 \rightarrow \text{D}^{0*}_{\text{fast}} + \text{D}^+ \]

- Injected neutrals provide active source and allows for localized measurements

FIDA spectroscopy measures Doppler shifted emission from fast particles

- Fast-ion D-alpha (FIDA) spectroscopy [1] relies on CX-reactions of fast-ions with donor neutrals:

\[D^+_{\text{fast}} + D_0 \rightarrow D^{0*}_{\text{fast}} + D^+ \]

- Injected neutrals provide active source and allows for localized measurements

- Background neutrals lead to source of passive emission particularly along edge lines of sight

The ASDEX Upgrade edge FIDA system

- ASDEX Upgrade (AUG) is equipped with a core and edge FIDA system [1, 2]

- Several views allow for radially localized fast-ion density information

The ASDEX Upgrade edge FIDA system

- ASDEX Upgrade (AUG) is equipped with a core and edge FIDA system [1, 2]

- Several views allow for radially localized fast-ion density information

- Interpreting the measured spectra requires forward modelling or tomography

The ASDEX Upgrade edge FIDA system

- ASDEX Upgrade (AUG) is equipped with a core and edge FIDA system [1, 2]

- Several views allow for radially localized fast-ion density information

- Interpreting the measured spectra requires forward modelling or tomography

- FIDASIM [3] is used to calculate synthetic spectra from theoretical fast-ion distributions

Experiments were performed to investigate the impact of RMPs on FIs

- High power, low density discharges were performed with $I_p = 0.6$ MA and $B_t = -2.5$T
Experiments were performed to investigate the impact of RMPs on FIs

- High power, low density discharges were performed with $I_p = 0.6$ MA and $B_t = -2.5$T

- Off-axis NBI heating was performed to generate a large edge fast-ion density
Experiments were performed to investigate the impact of RMPs on FIs

- High power, low density discharges were performed with $I_p = 0.6$ MA and $B_t = -2.5$T

- Off-axis NBI heating was performed to generate a large edge fast-ion density

- Beam modulation was performed to allow for passive FIDA subtraction
Experiments were performed to investigate the impact of RMPs on FIs

- High power, low density discharges were performed with $I_p = 0.6$ MA and $B_t = -2.5$T

- Off-axis NBI heating was performed to generate a large edge fast-ion density

- Beam modulation was performed to allow for passive FIDA subtraction

- Rotating RMP with n=2 periodicity were applied in two 2s phases with differing $\Delta\Phi$
RMPs cause a reduction in the edge FIDA emission

- Drop in the edge FIDA emission when RMP’s switch on

\[\Delta \Phi_{ul} = 0^\circ \quad \Delta \Phi_{ul} = -60^\circ \]
RMPs cause a reduction in the edge FIDA emission

- Drop in the edge FIDA emission when RMP’s switch on
- Modulation in beam emission (BES) correlated to RMP rotation

![Graph showing FIDA and BES radiances](image)

- \(\Delta \Phi_{ul} = 0^\circ \)
- \(\Delta \Phi_{ul} = -60^\circ \)
RMPs cause a reduction in the edge FIDA emission

- Drop in the edge FIDA emission when RMP’s switch on
- Modulation in beam emission (BES) correlated to RMP rotation
- Similar modulation in FILD signal, useful to apply LIBP technique [1,2]

\[\Delta \Phi_{ul} = 0^\circ \]
\[\Delta \Phi_{ul} = -60^\circ \]

RMPs cause a reduction in the edge FIDA emission

- Drop in the edge FIDA emission when RMP’s switch on
- Modulation in beam emission (BES) correlated to RMP rotation
- Similar modulation in FILD signal, useful to apply LIBP technique [1,2]
- Small variation in plasma outer separatrix position as the RMPs are rotated

ΔΦ₁₁ = 0° ΔΦ₁₁ = -60°

RMPs cause a reduction in the edge FIDA emission

• Drop in the edge FIDA emission when RMP’s switch on

• Modulation in beam emission (BES) correlated to RMP rotation

• Similar modulation in FILD signal, useful to apply LIBP technique [1,2]

• Small variation in plasma outer separatrix position as the RMPs are rotated

\[\Delta \Phi_{ul} = 50^\circ \]
\[\Delta \Phi_{ul} = -120^\circ \]

Core FIDA profile is not strongly affected by RMPs

- Minimal change in the core FIDA profile is observed when the RMPs are turned on.
Core FIDA profile is not strongly affected by RMPs

- Minimal change in the core FIDA profile is observed when the RMPs are turned on.

- However, we should consider that RMPs may cause a change in the beam density.
Core FIDA profile is not strongly affected by RMPs

- Minimal change in the core FIDA profile is observed when the RMPs are turned on.

- However, we should consider that RMPs may cause a change in the beam density.

- But, normalising the FIDA profile with the BES does not change the picture.
RMPs cause a collapse of the edge FIDA profile

- A clear drop in the edge FIDA profile is observed when the RMPs are switched on
RMPs cause a collapse of the edge FIDA profile

- A clear drop in the edge FIDA profile is observed when the RMPs are switched on

\[\Delta \Phi_{ul} = 0^\circ \]

\(\Delta \Phi_{ul} \) is observed to impact the reduction in the FIDA
RMPs cause a collapse of the edge FIDA profile

- A clear drop in the edge FIDA profile is observed when the RMPs are switched on.

- $\Delta \Phi_{ul}$ is observed to impact the reduction in the FIDA.

\[
\Delta \Phi_{ul} = 50^\circ
\]
1. Overview of experiments performed

2. Analyses and modelling of experimental results

3. Conclusion and outlook
Anomalous fast-ion diffusion required in TRANSP modelling

- TRANSP/NUBEAM modelling has been carried out to assess neoclassical transport
Anomalous fast-ion diffusion required in TRANSP modelling

- TRANSP/NUBEAM modelling has been carried out to assess neoclassical transport.
- TRANSP modelling is able to match the RMP off phase measurements.
Anomalous fast-ion diffusion required in TRANSP modelling

- TRANSP/NUBEAM modelling has been carried out to assess neoclassical transport.

- TRANSP modelling is able to match the RMP off phase measurements.

- The RMP induced reduction in stored energy is largely due to loss of thermal plasma.
Anomalous fast-ion diffusion required in TRANSP modelling

- TRANSP/NUBEAM modelling has been carried out to assess neoclassical transport.
- TRANSP modelling is able to match the RMP off phase measurements.
- The RMP induced reduction in stored energy is largely due to loss of thermal plasma.
- The remaining discrepancy can be accounted for by considering anomalous fast-ion diffusion.

A. Jansen van Vuuren | 17th IAEA TM on Energetic Particles (online) | 07/12/2021 | 11 of 18
Edge FI diffusion is found to impact fast-ion density up to half radius

- The calculated fast-ion density profile does not change significantly

![Graph showing fast-ion density profile with and without edge FI diffusion](image)
Edge FI diffusion is found to impact fast-ion density up to half radius

- The calculated fast-ion density profile does not change significantly

- A scan of anomalous fast-ion diffusion profiles was performed
Edge FI diffusion is found to impact fast-ion density up to half radius

- The calculated fast-ion density profile does not change significantly
- A scan of anomalous fast-ion diffusion profiles was performed
- Anomalous diffusion of 2 m2s$^{-1}$ up to $\rho \sim 0.95$ was found to best agree with experimental measurements
Edge FI diffusion is found to impact fast-ion density up to half radius

- The calculated fast-ion density profile does not change significantly

- A scan of anomalous fast-ion diffusion profiles was performed

- Anomalous diffusion of $2 \, m^2s^{-1}$ up to $\rho \sim 0.95$ was found to best agree with experimental measurements

- A reduction in the fast-ion density
 - extends up to $\rho \sim 0.6$
Edge FI diffusion is found to impact fast-ion density up to half radius

- The calculated fast-ion density profile does not change significantly

- A scan of anomalous fast-ion diffusion profiles was performed

- Anomalous diffusion of $2 \, \text{m}^2\text{s}^{-1}$ up to $\rho \sim 0.95$ was found to best agree with experimental measurements

- A reduction in the fast-ion density
 - extends up to $\rho \sim 0.6$
 - $\sim 2\%$ of the total fast-ion content
Anomalous diffusion also needed to match FIDA profiles

- FIDASIM forward modelling produces good match with core FIDA/BES profiles
Anomalous diffusion also needed to match FIDA profiles

- FIDASIM forward modelling produces good match with core FIDA/BES profiles
- Modelling of the edge FIDA/BES profile matches during RMP off phase
Anomalous diffusion also needed to match FIDA profiles

- FIDASIM forward modelling produces good match with core FIDA/BES profiles

- Modelling of the edge FIDA/BES profile matches during RMP off phase

- However, the edge emission profiles overestimated during RMP on times
Anomalous diffusion also needed to match FIDA profiles

- FIDASIM forward modelling produces good match with core FIDA/BES profiles
- Modelling of the edge FIDA/BES profile matches during RMP off phase
- However, the edge emission profiles overestimated during RMP on times
- Including anomalous fast-ion diffusion results in better match with the measured profile
Modelling of the vacuum RMP fields show reduction in FI density at edge

- ASCOT modelling has been performed to model the effect of the 3D perturbation fields
Modelling of the vacuum RMP fields show reduction in FI density at edge

- ASCOT modelling has been performed to model the effect of the 3D perturbation fields
- RMP vacuum fields have been added to the axisymmetric equilibrium used in TRANSP

RMP perturbation field included in ASCOT
Modelling of the vacuum RMP fields show reduction in FI density at edge

- ASCOT modelling has been performed to model the effect of the 3D perturbation fields
- RMP vacuum fields have been added to the axisymmetric equilibrium used in TRANSP
- The non axisymmetric modelling shows a reduction in the fast-ion density in line with TRANSP
Modelling of the vacuum RMP fields show reduction in FI density at edge

- ASCOT modelling has been performed to model the effect of the 3D perturbation fields
- RMP vacuum fields have been added to the axisymmetric equilibrium used in TRANSP
- The non axisymmetric modelling shows a reduction in the fast-ion density in line with TRANSP
Modelling of the vacuum RMP fields show reduction in FI density at edge

- ASCOT modelling has been performed to model the effect of the 3D perturbation fields
- RMP vacuum fields have been added to the axisymmetric equilibrium used in TRANSP
- The non axisymmetric modelling shows a reduction in the fast-ion density in line with TRANSP
- However, fast-ion reduction underestimates change in the FIDA emission.
Modelling of the vacuum RMP fields show reduction in FI density at edge

- ASCOT modelling has been performed to model the effect of the 3D perturbation fields
- RMP vacuum fields have been added to the axisymmetric equilibrium used in TRANSP
- The non axisymmetric modelling shows a reduction in the fast-ion density in line with TRANSP
- However, fast-ion reduction underestimates change in the FIDA emission.
- Need to consider plasma response [1]

Outline

1. Overview of experiments performed

2. Analyses and modelling of experimental results

3. Conclusion and outlook
Conclusion

- RMP fields cause a reduction in edge FIDA emission on AUG

- Neoclassical modelling overestimates the experimental stored energy and FIDA emission during RMP on times

- Including anomalous fast-ion diffusion in neoclassical modelling shows a good match with experimental measurements can be achieved

- Indeed, 3D modelling of the vacuum perturbation fields show a reduction in the edge fast-ion density, but underestimates the absolute change in the FIDA profile
Outlook

- ASCOT modelling using V-MEC calculated equilibria with ideal MHD plasma response [1] included is being performed

- Comparison with JOREK modelling of the RMP plasma response [2] is on the horizon

Core FIDA profiles well matched

#39414

- t: 1.8 to 2.0 [s] RMPs off
- t: 2.1 to 2.3 [s] RMPs on

λ: 659.22 - 660.32 nm

FIDA/BES

ρ_{pol}