

Determination of Runaway Electron Distribution Parameters from Synchrotron Radiation Measurements

C. Monti¹, G. Ghillardi¹, C. Barcellona², B. Esposito¹, M. Hoppe³, J.R. Martin Solis⁴

¹ENEA, Frascati, Italy

²Università degli Studi di Catania, Catania, Italy

³Chalmers University of Technology, Gothenburg, Sweden

⁴Universidad Carlos III de Madrid, Leganes, Spain

Italian National Agency for New Technologies, Energy and Sustainable Economic Development

Outline

- **Runaway Electron** (RE) beams, forming after disruptions, are one of the main concerns for ITER operations since their impact onto the plasma facing components may cause damages
- Synchrotron radiation emitted by RE is a powerful tool to infer information on their dynamics
- A portable Runaway Electron Imaging and Spectroscopy (REIS) system has been developed by ENEA and used in FTU, AUG, TCV and COMPASS.
- An upgrade of the original system (REIS-Extended) now covers the wavelength range 0.4-5 μm
- Comparison between experimental and simulated synchrotron images and spectra (simulation by means of SOFT: Synchrotron-detecting Orbit Following Toolkit) leads to the estimates of RE parameters:
 - pitch angle
 - maximum energy
 - radial density profile
 - number

Synchrotron Emission from RE

REIS Components

backward (BW) view, and with a

CCD camera

Fast JAI CCD camera (120 frames per second)

VIS range spectrometers (FW & BW views) 400-800 nm


```
NIR range
spectrometer
900-2500 nm
```


MIR range spectrometer 1400-5000 nm

REIS Set-Up

blackbody sources

components combined in the system using

FTU midplane cross section. CCD camera and spectrometers field of view (FOV) are shaded, respectively, in gray and brown.

Analysis Method

- Simulation using SOFT software developed by Chalmers University
- Method applied for each time of the acquisition.
- Monoenergetic distribution function found to be slightly better than exponential distribution.

SPECTRA: experimental (red) vs SOFT reconstruction (black)

FTU #43651

RE Number

RE number as determined by best match of SOFT simulated spectra to experimental spectra

Estimated RE Current fraction of total Current

IMAGES: experimental (left) vs SOFT reconstruction (right)

BEST Pitch Angles = [0.3, 0.25, 0.25, 0.25, 0.3, 0.3]

RE Pitch Angle

Images are more sensitive to pitch angle than Spectra

Showing pitch angles determined from Images (see previous slide) for 3 FTU RE discharges

RE Maximum Energy

'BEST' corresponds to values obtained using pitch angle derived from Images

In plasma current ramp-up time interval no REIS data are available (low RE synchrotron emission) **simulation using Test Particle Model has been performed** → based on experimental measurements (density and loop voltage) → good match with experimental data

RE Radial density profiles

Radial profiles are derived comparing simulated images and experimental ones.

An algorithm determines the radial profile maximizing the similarity between the two images.

Synchrotron Emission from RE in TCV

SPECTRA and ENERGY from RE in TCV

Future installation on WEST (2022)

Spectra from REIS + images from WEST fast visible camera

Outcomes and Prospects

- REIS-E successfully calibrated, tested, and installed so far on FTU, COMPASS and TCV
- Demonstrated the potential of combining spectra and images for **RE dynamics reconstruction** with determination of time evolution of RE parameters
- Work results contained in "Overview of the FTU results", OV/P-2 (IAEA 2020).

Future applications:

- Planned installation on WEST in March 2022
- Future use of the diagnostic for DTT device
- Planned development: real-time version

