

Unstable beta-induced ion temperature gradient (BTG) eigenmodes in JET plasmas with ITB and elevated monotonic q-profiles.

Nicolas Fil^{1,2}

S.E. Sharapov¹, M. Fitzgerald¹, G.J. Choi³, Z. Lin³, R.A. Tinguely², H.J.C. Oliver¹, K.G. McClements¹, P.G. Puglia⁴, R.J. Dumont⁵, D. Keeling¹, A.C.A. Figueiredo⁶, M. Porkolab², J. Mailloux¹, E. Joffrin⁵, and JET Contributors^{*}

N. Fil, et al. | 17th IAEA-EPPI Conf. | 6th Dec. 2021 | 1

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Interpretation of low-frequency electromagnetic (EM) perturbations in JET.

<u>Modes</u> in the sub-TAE frequency range in JET plasma with elevated q-profile

- JET pulse 92054: an excellent example
 - Clear observations of the EM modes on many diagnostics.
 - Extensively studied in [1]
- Identification of experimental characteristics of the EM modes.
- Comparison with BTG analytic theory.
- Comparison with gyrokinetic (GK) simulations.
- BTG modes saturation may correlate with neutron-rate roll-over.

- JET pulse 92054: an excellent example
 - Clear observations of the EM modes on many diagnostics.
 - Extensively studied in [1]
- Identification of experimental characteristics of the EM modes.
- Comparison with BTG analytic theory.
- Comparison with gyrokinetic (GK) simulations.
- BTG modes saturation may correlate with neutron-rate roll-over.

Clear observations of the EM modes on many diagnostics.

• Magnetics: EM perturbations observed on all available Mirnov coils (no radial information)

• <u>Soft X-Ray</u>: EM perturbations observed on most of the channels (6, <u>7</u>, 8, 10, 11, 13, 14) except edge ones (2,3,4,5,15)*.

- Interferometry: only the two channels looking at the plasma core (V02 and V03) measured density fluctuations.
 - The observed modes have not a clear ballooning nor anti-ballooning structure.

• Reflectometer: limited operational range during this JPN 92054 (R > 3.35m), modes detected for $R(m) \in [3.35, 3.42]$

*SXR channels 9 and 12

appeared broken

JET pulse 92054 – an excellent test case

- high q_{min} (on the magnetic axis),
- Internal transport barriers (ITBs) clearly achieved for the 1^{st} time in JET-ILW, probably linked to q = 2 surface.

Plasma parameters at 6.4s						
B ₀	3.44 [<i>T</i>]					
I_P	2.67 [<i>MA</i>]					
P_{NBI}	25.1 [MW]					
P _{ICRH}	0 [MW]					
R_{NT}	$1.44 \ [10^{16} \ s^{-1}]$					
n_{e_0}	5.43 $[10^{19} m^{-3}]$					
T_{e_0}	5.36 [keV]					
n_{i_0}	$4.80 \ [10^{19} \ m^{-3}]$					
T_{i_0}	12.96 [keV]					
q_0	1.86					
R_0	3.03 [<i>m</i>]					
V_A	7.06 $[10^6 m. s^{-1}]$					

[Dumont et al., NF 58 (2018)][Figure 6.]

JET pulse 92054 – an excellent test case

- high q_{min} (on the magnetic axis),
- Internal transport barriers (ITBs) clearly achieved for the 1^{st} time in JET-ILW, probably linked to q = 2 surface.
- High-β regime* → candidates for the EM modes are <u>beta-induced</u> modes:

Alfvén Eigenmode: AE <u>BAE</u> <u>BAAE</u> <u>BTG</u> Acoustic AE

BTG: electromagnetic mode analogue of ITG electrostatic mode.

Plasma parameters at 6.4s				
B ₀	3.44 [<i>T</i>]			
I_P	2.67 [<i>MA</i>]			
P _{NBI}	25.1 [MW]			
P _{ICRH}	0 [MW]			
R_{NT}	$1.44 \ [10^{16} \ s^{-1}]$			
n_{e_0}	5.43 $[10^{19} m^{-3}]$			
T_{e_0}	5.36 [keV]			
n_{i_0}	$4.80 \ [10^{19} \ m^{-3}]$			
T_{i_0}	12.96 [keV]			
q_0	1.86			
R_0	3.03 [<i>m</i>]			
V_A	7.06 $[10^6 m. s^{-1}]$			

Can we match experimental observations vs analytic theory vs simulations?

- JET pulse 92054: an excellent example
 - Clear observations of the EM modes on many diagnostics.
 - Extensively studied in [1]
- Identification of experimental characteristics of the EM modes.
- Comparison with BTG analytic theory.
- Comparison with gyrokinetic (GK) simulations.
- BTG modes saturation may correlate with neutron-rate roll-over.

Plasma frame frequencies for BAE, BAAE and BTG modes.

Experimental characteristics | EM perturbations frequency vs plasma parameters

n: toroidal mode number *m*: poloidal mode number q = m/n

• Several radial positions ($q = q_0, 2, 9/4, 10/4, 11/4$ and 3)

•
$$\frac{1}{\sqrt{n_e}}, T_e, \nabla T_e, \frac{1}{\sqrt{n_i}}, \frac{1}{\sqrt{T_i}}, \nabla T_i, \frac{1}{\sqrt{n_{fi}}}, T_{fi}, \frac{1}{p}, p', f_{Alfvén_{on-axis'}}, \omega_i^*, \omega_e^*, f_{GAM}, f_{BAAE}.$$

Pearson correlation coefficients ($q=2$)										
$\frac{1}{\sqrt{n_e}}$	T _e	∇T_e	$\frac{1}{\sqrt{n_i}}$	$\frac{1}{\sqrt{T_i}}$	∇T_i	$\frac{1}{\sqrt{n_{fi}}}$	T _{fi}	$\frac{1}{p}$	p'	
.71	-0.56	0.85	0.77	0.18	0.98	-0.81	0.72	-0.65	0.09	
f_{A0}	ω_i^*	ω_e^*	f _{GAM}	<i>f_{BAAE}</i>						
0.97	0.92	-0.93	0.87	0.05						
Strong dependence on thermal ion										
						BAE	BAAE	BTG		

Can we match experimental observations vs analytic theory vs simulations?

- JET pulse 92054: an excellent example
 - Clear observations of the EM modes on many diagnostics.
 - Extensively studied in [1]
- Identification of experimental characteristics of the EM modes.
- Comparison with BTG analytic theory.
- Comparison with gyrokinetic (GK) simulations.
- BTG modes saturation may correlate with neutron-rate roll-over.

Beta-induced Temperature-gradient eigenmode (BTG), analytic theory

BTG: electromagnetic mode analogue of ITG electrostatic mode.

Conditions of existence for BTG modes [2]:

i. positive relative ion temperature gradient (η_i) :

$$\eta_i = \frac{\partial \ln(T_i)}{\partial \ln(n_i)} > 0$$

- ii. ion beta (β_{ion}) higher than a critical value (β_i^{crit}): $\beta_{ion} > \beta_i^{crit} \equiv 9/2 \ q^2 S^2 L^2 / R^2$
- iii. magnetic shear condition ($U_0 < 2$):

$$U_0 = -\frac{8 \pi r p_0'}{S^2 B_0^2} (q^2 - 1)$$

S = rq'/q the magnetic shear, L: characteristic scale length of the plasma inhomogeneity R: major radius of the tokamak p'_0 : pressure gradient B_0 : toroidal magnetic field on-axis

[2] Mikhailovskii, Sharapov, Plasma Phys. Rep. v.25, p.911 (1999) See also JET reports: MHD [JET–P(98)18] & Kinetic [JET–P(98)12] theories

BTG modes | criteria (i): positive relative ion temperature gradient

BTG modes | criteria (ii): Beta ion critique

N. Fil, et al. | 17th IAEA-EPPI Conf. | 6th Dec. 2021 | 15

BTG modes | criteria (iii): magnetic shear condition $U_0 = -\frac{8 \pi r p'_0}{s^2 B_0^2} (q^2 - 1) < 2$

BTG modes | Characteristic thermal ion frequencies

JEI

N. Fil, et al. | 17th IAEA-EPPI Conf. | 6th Dec. 2021 | 17

BTG conditions are met when unstable EM perturbations are observed.

BTG conditions vs time — n = 4

Time [s]	4.5-5.8	5.9-6.0	6.1	6.2	6.3	6.4	6.5	6.6	6.7
Unstable EM modes	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	×
(i) $0 < \eta_{ion}$	11/4	10/4	10/4	9/4	8/4	8/4	8/4	8/4	8/4
(ii) $\beta_{ic} < \beta_{ion}$	×	×	10/4	9/4	8/4	8/4	8/4	8/4	8/4
(iii) $U_0 < 2$	11/4	10/4	10/4	9/4	8/4	8/4	8/4	8/4	9/4
(i) + (ii) + (iii)	×	×	10/4	9/4	8/4	8/4	8/4	8/4	×
q = 2 (EFIT)	×	×	X	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Can we match experimental observations vs analytic theory vs simulations?

- JET pulse 92054: an excellent example
 - Clear observations of the EM modes on many diagnostics.
 - Extensively studied in [1]
- Identification of experimental characteristics of the EM modes.
- Comparison with BTG analytic theory.
- Comparison with gyrokinetic (GK) simulations.
- BTG modes saturation may correlate with neutron-rate roll-over.

Modelling | Alfvén-acoustic continuum and characteristic modes frequencies

ALCON code [3] solve the ideal MHD Alfvén continuum using a poloidal-spectral method.

Finite compressibility of the plasma taken into account:

 coupling between Alfvén and sound waves.

<u>Limitation</u>: **no** ion drif effects taken into account: **▶ no** "BTG gap"

Experimental estimation of frequency range

N. Fil, et al. | 17th IAEA-EPPI Conf. | 6th Dec. 2021 | 20 [3] W. Deng, et al. Nuclear Fusion 52 (2012) 043006.

Uniform thermal plasma, BAE and BAAE found with GTC using antenna perturbation.

- Uniform thermal plasma + synthetic antenna perturbation at a single frequency → frequency scan to probe resonance conditions
 - ➢ BAE and BAAE resonances
 - \succ no clear resonance near the ion diamagnetic frequency (ω_i^*) for BTG mode.
 - Because there is no thermal plasma inhomogeneity effects (no ∇T_i to drive BTG modes).

- Linear electromagnetic global δf
- Thermal ion:
 - Gyrokinetic (GK) treatment
 - Initial Maxwellian distribution
- Thermal electrons:
 - Massless fluid w/wo kinetic effect
- No collision, no (NBI) fast ion
- $n = 4 \& m \in [7,11]$
- Mode structure:
 - Single dominant *m* = 8 poloidal harmonic
 - Localisation: q=2(=8/4)
 - frequency: $f \cong 41.5 \text{ kH}_z$
 - Dominant Alfvénic polarisation
 - Propagation in the ion diamagnetic direction
- Stability:
 - Kinetically driven by thermal ion
 - $\frac{\gamma}{\omega} \sim 24\%$

 ϕ : electrostatic potential

[4] Z. Lin et al., Science 281 (1998) 1835

n scan | Frequencies *n* to n + 1: $\Delta f \sim \omega_i^*$

n scan: identical simulation parameters except for $n \in [3,6]$)

T_i scan | Strong dependence on thermal ion temperature

 T_i scan while keeping total plasma beta constant: $T_i * A(\%) \& T_e * (1 - (A(\%) - 1)\frac{T_i}{T_e})$ $\nabla T_i / T_i$ remains constant

N. Fil, et al. | 17th IAEA-EPPI Conf. | 6th Dec. 2021 | 24

Can we match experimental observations vs analytic theory vs simulations?

- JET pulse 92054: an excellent example
 - Clear observations of the EM modes on many diagnostics.
 - Extensively studied in [1]
- Identification of experimental characteristics of the EM modes.
- Comparison with BTG analytic theory
- Comparison with gyrokinetic (GK) simulations.
- BTG modes saturation may correlate with neutron-rate roll-over

BTG modes are possible candidates for explaining the neutron-rate "roll-over"

BTG modes are possible candidates for explaining the neutron-rate "roll-over"

- Empty markers indicate times and neutron rates at roll-over.
- Full markers indicate times at BTG modes maximum intensity.
- Error bars indicate BTG unstable modes (from magnetic Mirnov coils).
- ➢ BTG modes appear and peak before neutron rate roll-over.
 ➢ (t_{RNTmax} t_{BTGmax}) ~ 0.09 s
 ➢ (t_{RNTmax} t_{BTGmax}) ∈ [0.01,0.17]

Conclusions

- Electromagnetic modes observe in JET advanced tokamak scenarios with ITB are identified to be beta-induced ion temperature gradient (BTG) eigenmodes.
- Experimental measurements, analytic theory and gyrokinetic simulations agree on the mode characteristic:
 - One dominant poloidal harmonic (m = n * q).
 - Localisation: around q=2, related to the ITB.
 - Coupling of Alfvénic and drift waves.
 - Strong dependence on thermal ion temperature, especially its gradient ∇T_i .
 - Frequencies ~ ω_i^*
- Future work:
 - BTG modes are possible candidates for explaining the neutron-rate "roll-over".
 - Experimental investigation of the correlations between other plasmas parameters (impurity accumulation, fast ions population, ...) and the neutron-rate "roll-over".
 - Non-linear gyrokinetic simulations of BTG modes and their effects on plasma stability.

Thank you for your attention

N. Fil, et al. | 17th IAEA-EPPI Conf. | 6th Dec. 2021 | 29

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.