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Interpretation of low-frequency electromagnetic (EM) perturbations in JET. 

Modes in the sub-TAE frequency range in JET plasma with elevated q-profile
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Present work: study these observed EM modes

JET pulse 92054
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Can we match experimental observations vs analytic theory vs simulations?

• JET pulse 92054: an excellent example

• Clear observations of the EM modes on many diagnostics.

• Extensively studied in [1]

• Identification of experimental characteristics of the EM modes.

• Comparison with BTG analytic theory.

• Comparison with gyrokinetic (GK) simulations.

• BTG modes saturation may correlate with neutron-rate roll-over.

[1] Dumont et al., Nuclear Fusion, 58 (2018)
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Can we match experimental observations vs analytic theory vs simulations?

• JET pulse 92054: an excellent example

• Clear observations of the EM modes on many diagnostics.

• Extensively studied in [1]

• Identification of experimental characteristics of the EM modes.

• Comparison with BTG analytic theory.

• Comparison with gyrokinetic (GK) simulations.

• BTG modes saturation may correlate with neutron-rate roll-over.

[1] Dumont et al., Nuclear Fusion, 58 (2018)
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• Magnetics: EM perturbations observed on all available Mirnov coils (no radial information)

• Soft X-Ray: EM perturbations observed on most of the channels (6, 7, 8, 10, 11, 13, 14) except edge ones (2,3,4,5,15)*.

• Interferometry: only the two channels looking at the plasma core (V02 and V03) measured density fluctuations.

• The observed modes have not a clear ballooning nor anti-ballooning structure.

• Reflectometer: limited operational range during this JPN 92054 (𝑅 > 3.35𝑚), modes detected for 𝑅 𝑚 ∈ 3.35,3.42

Clear observations of the EM modes on many diagnostics.

*SXR channels 9 and 12 
appeared broken
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Plasma parameters at 6.4s

𝐵0 3.44 [𝑇]

𝐼𝑃 2.67 [𝑀𝐴]

𝑃𝑁𝐵𝐼 25.1 [MW]

𝑃𝐼𝐶𝑅𝐻 0 [MW]

𝑅𝑁𝑇 1.44 [1016 𝑠−1]

𝑛𝑒0 5.43 [1019 𝑚−3]

𝑇𝑒0 5.36 [𝑘𝑒𝑉]

𝑛𝑖0 4.80 [1019 𝑚−3]

𝑇𝑖0 12.96 [𝑘𝑒𝑉]

𝑞0 1.86

𝑅0 3.03 [𝑚]

𝑉𝐴 7.06 [106 𝑚. 𝑠−1]

[Dumont et al., NF 58 (2018)][Figure 6.]

JET pulse 92054 – an excellent test case

• high 𝑞𝑚𝑖𝑛 (on the magnetic axis),

• Internal transport barriers (ITBs)

clearly achieved for the 1st time in

JET-ILW, probably linked to 𝑞 = 2

surface.
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BAE BAAEBAE BAAE BTG

Plasma parameters at 6.4s

𝐵0 3.44 [𝑇]

𝐼𝑃 2.67 [𝑀𝐴]

𝑃𝑁𝐵𝐼 25.1 [MW]

𝑃𝐼𝐶𝑅𝐻 0 [MW]

𝑅𝑁𝑇 1.44 [1016 𝑠−1]

𝑛𝑒0 5.43 [1019 𝑚−3]

𝑇𝑒0 5.36 [𝑘𝑒𝑉]

𝑛𝑖0 4.80 [1019 𝑚−3]

𝑇𝑖0 12.96 [𝑘𝑒𝑉]

𝑞0 1.86

𝑅0 3.03 [𝑚]

𝑉𝐴 7.06 [106 𝑚. 𝑠−1]

[Dumont et al., NF 58 (2018)][Figure 6.]

JET pulse 92054 – an excellent test case

• high 𝑞𝑚𝑖𝑛 (on the magnetic axis),

• Internal transport barriers (ITBs)

clearly achieved for the 1st time in

JET-ILW, probably linked to 𝑞 = 2

surface.

• High-𝛽 regime* → candidates for the

EM modes are beta-induced modes:

BTG: electromagnetic mode analogue of

ITG electrostatic mode.

𝛽 =
𝑛𝑇

𝐵2/2𝜇0
≡

𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

BAE

∇𝑇𝑖
Alfvén Eigenmode: AE

Acoustic AE
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Can we match experimental observations vs analytic theory vs simulations?

• JET pulse 92054: an excellent example

• Clear observations of the EM modes on many diagnostics.

• Extensively studied in [1]

• Identification of experimental characteristics of the EM modes.

• Comparison with BTG analytic theory.

• Comparison with gyrokinetic (GK) simulations.

• BTG modes saturation may correlate with neutron-rate roll-over.

[1] Dumont et al., Nuclear Fusion, 58 (2018)
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Plasma frame frequencies for BAE, BAAE and BTG modes.

BAE: 𝑓𝐺𝐴𝑀
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BAAE: ห𝑓𝐵𝐴𝐴𝐸
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BTG: 𝜔𝑖
∗ = −
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Lab frame frequencies match ion diamagnetic frequencies (BTG)

Frequencies ~ 𝝎𝒊
∗

Localisation ~ 𝒒 = 𝟐
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Experimental characteristics | EM perturbations frequency vs plasma parameters

• Time evolution of mode frequency vs plasma parameters

• Several radial positions (𝑞 = 𝑞0, 2, 9/4, 10/4,11/4 and 3)

•
1

𝑛𝑒
, 𝑇𝑒 , ∇𝑇𝑒 ,

1

𝑛𝑖
,
1

𝑇𝑖
, ∇𝑇𝑖 ,

1

𝑛𝑓𝑖
, 𝑇𝑓𝑖 ,

1

p
, 𝑝′, 𝑓𝐴𝑙𝑓𝑣é𝑛on−axis

, 

𝜔𝑖
∗, 𝜔𝑒

∗, 𝑓𝐺𝐴𝑀, 𝑓𝐵𝐴𝐴𝐸.

BAE BAAE BTG

𝑛: toroidal mode number
𝑚: poloidal mode number
𝑞 = 𝑚/𝑛

𝒏

Pearson correlation coefficients (𝒒 = 𝟐)
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0.71 -0.56 0.85 0.77 0.18 0.98 -0.81 0.72 -0.65 0.09

𝑓𝐴0 𝜔𝑖
∗ 𝜔𝑒

∗ 𝑓𝐺𝐴𝑀 𝑓𝐵𝐴𝐴𝐸

-0.97 0.92 -0.93 0.87 0.05
Strong dependence on thermal ion  
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Can we match experimental observations vs analytic theory vs simulations?

• JET pulse 92054: an excellent example

• Clear observations of the EM modes on many diagnostics.

• Extensively studied in [1]

• Identification of experimental characteristics of the EM modes.

• Comparison with BTG analytic theory.

• Comparison with gyrokinetic (GK) simulations.

• BTG modes saturation may correlate with neutron-rate roll-over.

[1] Dumont et al., Nuclear Fusion, 58 (2018)
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Beta-induced Temperature-gradient eigenmode (BTG), analytic theory

BTG: electromagnetic mode analogue of ITG electrostatic mode.

Conditions of existence for BTG modes [2]:

i. positive relative ion temperature gradient (𝜼𝒊):

ii. ion beta (𝜷𝒊𝒐𝒏) higher than a critical value (𝜷𝒊
𝒄𝒓𝒊𝒕):

iii. magnetic shear condition (𝑼𝟎 < 𝟐):

𝜼𝒊 =
𝝏𝐥𝐧(𝑻𝒊)

𝝏𝒍𝒏(𝒏𝒊)
> 𝟎

𝜷𝒊𝒐𝒏 > 𝜷𝒊
𝒄𝒓𝒊𝒕 ≡ 𝟗/𝟐 𝒒𝟐𝑺𝟐𝑳𝟐/𝑹𝟐

𝑆 = 𝑟𝑞′/𝑞 the magnetic shear, 
𝐿: characteristic scale length of the plasma inhomogeneity
𝑅: major radius of the tokamak
𝑝0
′ : pressure gradient 

𝐵0: toroidal magnetic field on-axis

[2] Mikhailovskii, Sharapov, Plasma Phys. Rep. v.25, p.911 (1999)
See also JET reports: MHD [JET–P(98)18] & Kinetic [JET–P(98)12] 
theories

𝑼𝟎= −
𝟖 𝝅 𝒓 𝒑𝟎

′

𝑺𝟐𝑩𝟎
𝟐 (𝒒𝟐 − 𝟏)
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BTG modes | criteria (i): positive relative ion temperature gradient 
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BTG modes | criteria (ii): Beta ion critique 𝜷𝒊𝒐𝒏 > 𝜷𝒊
𝒄𝒓𝒊𝒕 ≡ 𝟗/𝟐 𝒒𝟐𝑺𝟐𝑳𝟐/𝑹𝟐
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𝑼𝟎= −
𝟖 𝝅 𝒓 𝒑𝟎

′

𝑺𝟐𝑩𝟎
𝟐 (𝒒𝟐 − 𝟏) < 2 BTG modes | criteria (iii): magnetic shear condition 
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BTG modes | Characteristic thermal ion frequencies

BTG analytical dispersion relation 
reduces to:

𝑹𝒆 𝝎 = 𝝎𝒊
∗
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BTG conditions are met when unstable EM perturbations 
are observed.
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Can we match experimental observations vs analytic theory vs simulations?

• JET pulse 92054: an excellent example

• Clear observations of the EM modes on many diagnostics.

• Extensively studied in [1]

• Identification of experimental characteristics of the EM modes.

• Comparison with BTG analytic theory.

• Comparison with gyrokinetic (GK) simulations.

• BTG modes saturation may correlate with neutron-rate roll-over.

[1] Dumont et al., Nuclear Fusion, 58 (2018)
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ALCON code [3] solve the
ideal MHD Alfvén continuum
using a poloidal-spectral
method.

Finite compressibility of the
plasma taken into account:
➢ coupling between Alfvén

and sound waves.

Limitation: no ion drift
effects taken into account:
➢ no “BTG gap”

Modelling | Alfvén-acoustic continuum and characteristic modes frequencies

[3] W. Deng, et al. Nuclear Fusion 52 (2012) 043006.

Experimental estimation 
of frequency range
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Uniform thermal plasma, BAE and BAAE found with GTC using antenna perturbation. 

• Uniform thermal plasma + synthetic antenna perturbation at a single frequency → frequency scan to probe resonance 
conditions

➢ BAE and BAAE resonances 

➢ no clear resonance near the ion diamagnetic frequency (𝜔𝑖
∗) for BTG mode.

▪ Because there is no thermal plasma inhomogeneity effects (no ∇𝑇𝑖 to drive BTG modes).

Experimental estimation 
of frequency range
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Non-uniform plasma | kinetically driven mode with BTG modes’ characteristics

[4] Z. Lin et al., Science 281 (1998) 1835

▪ Linear electromagnetic global 𝛿𝑓

▪ Thermal ion:
▪ Gyrokinetic (GK) treatment
▪ Initial Maxwellian distribution

▪ Thermal electrons:
▪ Massless fluid w/wo kinetic effect

▪ No collision, no (NBI) fast ion 

▪ 𝑛 = 4 & m ∈ 7,11
▪ Mode structure:

▪ Single dominant 𝒎 = 𝟖 poloidal 
harmonic

▪ Localisation: q=2(=8/4) 
▪ frequency: 𝑓 ≅ 41.5 kHz

▪ Dominant Alfvénic polarisation
▪ Propagation in the ion diamagnetic 

direction
▪ Stability:

▪ Kinetically driven by thermal ion

▪
𝛾

𝜔
~ 24% 𝜙: electrostatic potential
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𝒏 scan | Frequencies 𝒏 to 𝒏 + 𝟏: 𝚫𝐟 ~ 𝝎𝒊
∗

𝑛 scan: identical simulation parameters except for 𝑛 (∈ [3,6])
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𝑻𝒊 scan | Strong dependence on thermal ion temperature  

𝑇𝑖 scan while keeping total plasma beta constant:  𝑇𝑖 ∗ 𝐴 % &  𝑇𝑒 ∗ 1 − 𝐴 % − 1
𝑇𝑖

𝑇𝑒

∇𝑇𝑖/𝑇𝑖 remains constant
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Can we match experimental observations vs analytic theory vs simulations?

• JET pulse 92054: an excellent example

• Clear observations of the EM modes on many diagnostics.

• Extensively studied in [1]

• Identification of experimental characteristics of the EM modes.

• Comparison with BTG analytic theory

• Comparison with gyrokinetic (GK) simulations.

• BTG modes saturation may correlate with neutron-rate roll-over

[1] Dumont et al., Nuclear Fusion, 58 (2018)
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BTG modes are possible candidates for explaining the neutron-rate “roll-over”

JPN 95649 “roll-over”
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BTG modes are possible candidates for explaining the neutron-rate “roll-over”

• Empty markers indicate times
and neutron rates at roll-over.

• Full markers indicate times at
BTG modes maximum intensity.

• Error bars indicate BTG
unstable modes (from
magnetic Mirnov coils).

➢ BTG modes appear and peak
before neutron rate roll-over.

➢ 𝑡𝑅𝑁𝑇𝑚𝑎𝑥
− 𝑡𝐵𝑇𝐺𝑚𝑎𝑥

~ 0.09 𝑠

➢ 𝑡𝑅𝑁𝑇𝑚𝑎𝑥
− 𝑡𝐵𝑇𝐺𝑚𝑎𝑥

∈ 0.01,0.17
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Conclusions

• Electromagnetic modes observe in JET advanced tokamak scenarios with ITB are identified to
be beta-induced ion temperature gradient (BTG) eigenmodes.

• Experimental measurements, analytic theory and gyrokinetic simulations agree on the mode
characteristic:

• One dominant poloidal harmonic (𝑚 = 𝑛 ∗ 𝑞).

• Localisation: around 𝒒=𝟐, related to the ITB.

• Coupling of Alfvénic and drift waves.

• Strong dependence on thermal ion temperature, especially its gradient ∇𝑇𝑖.

• Frequencies ~ 𝜔𝑖
∗

• Future work:

• BTG modes are possible candidates for explaining the neutron-rate “roll-over”.

• Experimental investigation of the correlations between other plasmas parameters (impurity
accumulation, fast ions population, …) and the neutron-rate “roll-over”.

• Non-linear gyrokinetic simulations of BTG modes and their effects on plasma stability.
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Thank you for your attention


