

Jožef Stefan Institute

Orbit Weight Functions for Neutron Emission and One-step Reaction Gamma-ray Spectroscopy

H. Järleblad¹, L. Stagner², M. Salewski¹, J. Eriksson³, M. Nocente⁴, J. Rasmussen¹, Ž. Štancar^{5,6}

B.S. Schmidt¹ and JET Contributors*

- 1) Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- 2) General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA
- 3) Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
- 4) Department of Physics, University of Milano-Bicocca, 20126 Milano, Italy
- 5) Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- 6) UKAEA, Culham Centre for Fusion Energy, Abingdon, Oxfordshire, OX14 3DB, UK

17th Technical Meeting on Energetic Particles and Theory of Plasma Instabilities in Magnetic Confinement Fusion International Atomic Energy Agency, IAEA

*See the author list of 'Overview of JET results for optimising ITER operation' by J. Mailloux et al. to be published in Nuclear Fusion Special issue: Overview and Summary Papers from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021)

Outline

- Introduction
- Orbit space (E, p_m, R_m)
- Weight Function Formalism
- Orbit weight functions
 - Perpendicular sightlines
 - TOFOR (NES)
 - LaBr₃ detector (GRS)
 - Oblique sightline (NE213 detector, NES)
- WF analysis
- Conclusion and outlook

2

Introduction

- Fast ions will play a vital role in future burning plasmas [1]
- Velocity-space tomography reconstructs the fast-ion distribution function at a single (R, z) point [2,3,4]
- 2D $(E, v_{||}/v)$ sensitivity can be mapped via velocity-space weight functions [5,6,7]
- 3D sensitivity can be mapped via orbit weight functions [8,9]
- Prior to this work, developed for some diagnostics [8,9,10]

[1] D Moseev et al 2018 Rev. Mod. Plasma Phys. 2 7

- [2] M Salewski et al 2013 Nucl. Fusion **53** 063019
- [3] M Salewski et al 2017 Nucl. Fusion **57** 056001
- [4] AS Jacobsen et al 2016 Plasma Phys. Control. Fusion 58 045016

[5] W W Heidbrink et al 2007 Plasma Phys. Control. Fusion 49 1457–1475
[9] L. Stagner et al 2021 Nucl. Fusion, *at press*[6] M Salewski et al 2016 Nucl. Fusion 56 046009
[10] H Järleblad et al 2021 Rev. Sci. Instrum. 92 043526

[7] B.S. Schmidt et al 2021 Rev. Sci. Instrum. 92 053528

6 [8] Stagner L and Heidbrink W W 2017 Physics of Plasmas 24 092505

Introduction

- In this work, we map out how the orbit sensitivity varies with fast-ion and diagnostic energy
- Neutron emission spectroscopy (NES) orbit weight functions for TOFOR[10], an NE213-scintillator[11] and newly developed one-step reaction gamma-ray spectroscopy (GRS) orbit weight functions for a LaBr₃ detector[12] are used as examples
- We demonstrate that orbit weight functions are able to mimic forward model for computing synthetic signals
- Lastly, combine with example fast-ion distribution functions to split synthetic signals into orbit type constituents

^[10] M Gatu Johnson et al 2008 Nucl. Instrum. Methods Phys. Res. A 591 417–430

^[11] F Binda et al 2014 Rev. Sci. Instrum. **85** 11E23

^[12] M Nocente et al 2010 Rev. Sci. Instrum. 81 10D321

Outline

- Introduction

- Orbit space (E, p_m, R_m)
- Weight Function Formalism
- Orbit weight functions
 - Perpendicular sightlines
 - TOFOR (NES)
 - LaBr₃ detector (GRS)
 - Oblique sightline (NE213 detector, NES))
- WF analysis
- Conclusion and outlook

5

Slide keywords: six-dimensional motion

Orbit space (E, p_m, R_m)

Slide keywords: orbit types

Orbit space (E, p_m, R_m)

- The full six-dimensional charged particle motion in x and v can be dimensionally reduced to three
- Toroidal symmetry, guidingcentre-picture and $\nu \tau_p < < 1$
- Well-filled, clear boundaries and no mixing of position and velocity space [13]
- (E, p_m, R_m)

[13] JA Rome and YK M Peng 1979 Nucl. Fusion 19 1193

Slide keywords: coordinates

Orbit space (E, p_m, R_m)

- E is the energy, p_m is the pitch at the maximum major radius position R_m of the orbit
- Every realisable (valid) orbit corresponds to a unique (E, p_m, R_m) triplet

Slide keywords: slice

Orbit space (E, p_m, R_m)

- E is the energy, p_m is the pitch at the maximum major radius position R_m of the orbit
- Every realisable (valid) orbit corresponds to a unique (E, p_m, R_m) triplet

Slide keywords: topology

Orbit space (E, p_m, R_m)

JET shot No. 94701 at 10.7932 s

Orbit Weight Functions for Neutron Emission and One-step Reaction Gamma-ray Spectroscopy

Outline

- Introduction
- Orbit space (E, p_m, R_m)
- Weight Function Formalism
- Orbit weight functions
 - Perpendicular sightlines
 - TOFOR (NES)
 - LaBr₃ detector (GRS)
 - Oblique sightline (NE213 detector, NES)
- WF analysis
- Conclusion and outlook

11

Slide keywords: formalism

Weight function formalism

$$s(E_{1,d}, E_{2,d}) = \int w(E_{1,d}, E_{2,d}, \mathbf{x}, \mathbf{v}) f(\mathbf{x}, \mathbf{v}) d\mathbf{x} d\mathbf{v}$$

$$s(E_{1,d}, E_{2,d}) = \int w(E_{1,d}, E_{2,d}, E, p_m, R_m) f(E, p_m, R_m) dEdp_m dR_m$$

$$s(E_{1,d}, E_{2,d}) = \sum_{i,j,k} w(E_{1,d}, E_{2,d}, E_i, p_{m,j}, R_{m,k}) f(E_i, p_{m,j}, R_{m,k}) \Delta E \Delta p_m \Delta R_m$$

$$s(E_{1,d}, E_{2,d}) = \sum_{i,j,k} w(E_{1,d}, E_{2,d}, E_i, p_{m,j}, R_{m,k}) f(E_i, p_{m,j}, R_{m,k}) \Delta E \Delta p_m \Delta R_m$$
* See also for example J. Rueda-Rueda (Tuesday)

Slide keywords: S W F

S

m x 1

Weight function formalism

	F							
0.0	0.0	0.0	0.0	0.0	• • •	0.0	0.0	0.0
0.138	0.0	0.002	0.007	0.001	• • •	0.013	0.005	0.001
0.142	0.002	0.010	0.007	0.006	• • •	0.012	0.009	0.0
0.167	 0.003	0.010	0.006	0.008	• • •	0.013	0.008	0.002
:		•	•	•	• • •	•	• •	•
0.171	0.004	0.009	0.008	0.002	• • •	0.020	0.005	0.09
0.143	0.003	0.005	0.008	0.07	• • •	0.0	0.006	0.009
0.092	0.0	0.006	0.0	0.0	• • •	0.0	0.0	0.004
0.0	0.0	0.0	0.0	0.0	• • •	0.0	0.0	0.1
	-							

m x n

8th of December 2021 IAEA - 17th Technical Meeting on Energetic Particles and Theory of Plasma Instabilities in Magnetic Confinement Fusion

Weight function formalism

- Split orbit into its (E, p, R, Z) points
- Weigh each point by $\Delta t/ au_p$
- This 'distribution' is sent into the forward model [14]
- $= s(E_{1,d}, E_{2,d}) = \int w(E_{1,d}, E_{2,d}, E, p_m, R_m) \delta(E E_i) \delta(p_m p_{m,j}) \delta(R_m R_{m,k}) dEdp_m dR_m$
- $\Rightarrow s(E_{1,d}, E_{2,d}) = w(E_{1,d}, E_{2,d}, E_i, p_{m,j}, R_{m,k})$
- Put signals as columns in matrix
- The rows are the discretised weight functions $w(E_{1,d}, E_{2,d}, E, p_m, R_m)$
- The matrix is the weight matrix \boldsymbol{W}

[14] J Eriksson et al 2016 CPC **199** 40-46

Outline

- Introduction
- Orbit space (E, p_m, R_m)
- Weight Function Formalism
- Orbit weight functions
 - Perpendicular sightlines
 - TOFOR (NES)
 - LaBr₃ detector (GRS)
 - Oblique sightline (NE213 detector, NES))
- WF analysis
- Conclusion and outlook

15

Slide keywords: TOFOR orbit weights

DTU Slide keywords: TOFOR high sensitivity potato counter-stagnation

Orbit weight functions Perpendicular sightlines - TOFOR - D(D,n)³He

Orbit weight functions Perpendicular sightlines - TOFOR - D(D,n)³He

DTU Slide keywords: TOFOR high sensitivity counter-stagnation

Orbit weight functions Perpendicular sightlines - TOFOR - D(D,n)³He

DTU Slide keywords: TOFOR high sensitivity trapped orbit banana tip

Orbit weight functions Perpendicular sightlines - TOFOR - D(D,n)³He

DTU Slide keywords: TOFOR high sensitivity trapped orbit banana tip

Orbit weight functions Perpendicular sightlines - TOFOR - D(D,n)³He

Orbit weight functions

Perpendicular sightlines - TOFOR - D(D,n)³He

Orbit weight functions Perpendicular sightlines - TOFOR - D(D,n)³He

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Orbit weight functions Perpendicular sightlines - TOFOR - D(D,n)³He

Orbit weight functions Perpendicular sightlines - TOFOR - D(D,n)³He

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 Ξ

Orbit weight functions Perpendicular sightlines - TOFOR - D(D,n)³He

JET shot No. 94701 at 10.7932 s

Orbit weight functions Perpendicular sightlines - TOFOR - D(D,n)³He

JET shot No. 94701 at 10.7932 s

Ħ

Orbit weight functions Perpendicular sightlines - TOFOR - D(D,n)³He

8th of December 2021 IAEA - 17th Technical Meeting on Energetic Particles and Theory of Plasma Instabilities in Magnetic Confinement Fusion

Orbit Weight Functions for Neutron Emission and One-step Reaction Gamma-ray Spectroscopy

Outline

- Introduction
- Orbit space (E, p_m, R_m)
- Weight Function Formalism
- Orbit weight functions
 - Perpendicular sightlines
 - TOFOR (NES)
 - LaBr₃ detector (GRS)
 - Oblique sightline (NE213 detector, NES))
- WF analysis
- Conclusion and outlook

29

Orbit weight functions Perpendicular sightlines (GRS - T(p, γ)⁴He

a x [m]

DTU Slide keywords: GRS diagnostic orbit weight functions

Orbit weight functions Perpendicular sightlines - GRS - T(p, γ)⁴He

а х [m]

DTU Slide keywords: GRS diagnostic orbit weight functions

Orbit weight functions Perpendicular sightlines - GRS - T(p, γ)⁴He

a x [m]

Outline

- Introduction
- Orbit space (E, p_m, R_m)
- Weight Function Formalism
- Orbit weight functions
 - Perpendicular sightlines
 - TOFOR (NES)
 - LaBr₃ detector (GRS)
 - Oblique sightline (NE213 detector, NES))
- WF analysis
- Conclusion and outlook

33

Orbit weight functions Oblique sightline • NE213 - D(D,n)³He

с х [m]

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

x (m)

DTU Slide keywords: NE213 two co-passing areas of high sensitivity

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

DTU Slide keywords: NE213 two co-passing areas of high sensitivity

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

DTU Slide keywords: NE213 two co-passing areas of high sensitivity

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

JET shot No. 94701 at 10.7932 s

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

JET shot No. 94701 at 10.7932 s

 Ξ

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

JET shot No. 94701 at 10.7932 s

Ħ

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

JET shot No. 94701 at 10.7932 s

Ħ

DTU Slide keywords: NE213 high sensitivity trapped orbits banana tip

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

₩

x (m)

DTU Slide keywords: NE213 high sensitivity trapped orbits banana tip

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

Orbit weight functions Oblique sightline - NE213 - D(D,n)³He

Outline

- Introduction
- Orbit space (E, p_m, R_m)
- Weight Function Formalism
- Orbit weight functions
 - Perpendicular sightlines
 - TOFOR (NES)
 - LaBr₃ detector (GRS)
 - Oblique sightline (NE213 detector, NES))
- WF analysis
- Conclusion and outlook

52

Slide keywords: S W F once again

WF analysis

S = WF

53

Slide keywords: S versus WF comparison

S = WF

Slide keywords: WF orbit type splitting

WF analysis

$$WF = \sum_{h} W_{h}F_{h}$$

 $h =$ co-passing, trapped, counter-passing,...

55

Slide keywords: WF split orbit type analysis

WF analysis

Slide keywords: WF split orbit type analysis detail

Outline

- Introduction
- Orbit space (E, p_m, R_m)
- Weight Function Formalism
- Orbit weight functions
 - Perpendicular sightlines
 - TOFOR (NES)
 - LaBr₃ detector (GRS)
 - Oblique sightline (NE213 detector, NES))
- WF analysis
- Conclusion and outlook

59

Conclusion and outlook

DTU

- Orbit weight functions for NES and one-step reaction GRS have been developed
- Orbit weight functions map out the sensitivity of a diagnostic to fast-ion orbits
- The orbit sensitivity has patterns that can be identified by scanning 3D orbit space slice-by-slice in terms of fast-ion energy while superimposing topological boundaries between different orbit types
- Orbit weight functions are able to mimic forward models for computing synthetic signals
- Lastly, combine with fast-ion distribution functions to split synthetic signals into orbit type constituents
- In future work, orbit weight functions will be used to reconstruct the fast-ion distribution in terms of orbits, which can be transformed to (E, p, R, Z)

Jožef Stefan Institute

Orbit Weight Functions for Neutron Emission and One-step Reaction Gamma-ray Spectroscopy

H. Järleblad¹, L. Stagner², M. Salewski¹, J. Eriksson³, M. Nocente⁴, J. Rasmussen¹, Ž. Štancar^{5,6}
B.S. Schmidt¹ and JET Contributors*
1) Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
2) General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA
3) Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden

4) Department of Physics, University of Milano-Bicocca, 20126 Milano, Italy

5) Jožef Stefan Institute, 1000 Ljubljana, Slovenia

6) UKAEA, Culham Centre for Fusion Energy, Abingdon, Oxfordshire, OX14 3DB, UK

Thank you for your attention!

*See the author list of 'Overview of JET results for optimising ITER operation' by J. Mailloux et al. to be published in Nuclear Fusion Special issue: Overview and Summary Papers from the 28th Fusion Energy Conference (Nice, France, 10-15 May 2021)

Hamiltonian theory of adiabatic motion of relativistic charged particles

Cite as: Phys. Plasmas 14, 092107 (2007); https://doi.org/10.1063/1.2773702 Submitted: 13 June 2007 . Accepted: 30 July 2007 . Published Online: 18 September 2007

Xin Tao, Anthony A. Chan, and Alain J. Brizard