

Mitigation of Alfvén Eigenmodes in Negative Triangularity plasmas at TCV

P. Oyola, M. García-Muñoz, M. Vallar, E. Viezzer, J. Rueda-Rueda, J. Domínguez-Palacios, H. Chen, Y. Todo, S. Sharapov, A. Fasoli, B. Duval, A. Karpoushov, S. Coda, O. Sauter and the TCV and WPTE-RT11 teams.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

NT as a relevant reactor scenario

 Strong reduction of electron heat flux in NT was first observed in TCV^{1,2}.

¹ J. -M. Moret *et al.*, Phys. Rev. Lett. **79** 2057 (1997)
² Y. Camenen *et al.*, Nucl. Fusion **47** 510-516 (2007)
³ M. E. Austin *et al.*, Phys. Rev. Lett. **122** 115001 (2019)

10 Dec 2021

NT is an ELM-free regime with H-mode-like confinement

- Strong reduction of electron heat flux in NT was first observed in TCV^{1,2}.
- DIII-D team first showed that confinement is similar to PT in H-mode³.
 - → H-mode-like confinement in NT L-mode.
 - → Natural ELM-free scenario.

• Assessment of AEs and fast-ion transport.

¹ J. -M. Moret *et al.*, Phys. Rev. Lett. **79** 2057 (1997)
² Y. Camenen *et al.*, Nucl. Fusion **47** 510-516 (2007)
³ M. E. Austin *et al.*, Phys. Rev. Lett. **122** 115001 (2019)

AEs in NT firstly observed in DIII-D

 Experiments in DIII-D⁴ to obtain AEs, shows TAEs excited in NT and PT.

⁴ M. A. Van Zeeland *et al.*, NF **59** 086028 (2019)
⁵ Y. Ghai *et al.*, NF **61** 126020 (2021)
⁶ L. A. Charlton *et al.*, J. Comp. Phys **86** 270 (1990)

Gyrofluid simulations indicate negligible impact on AE activity

 Experiments in DIII-D⁴ to obtain AEs, shows TAEs excited in NT and PT.

- Numerical studies⁵ with FAR3d⁶:
 - Linear EP-driven AE.
 - 2-moments gyrofluid model for FI
 - Negligible impact of triangularity on AE growth rate

See talk by Y. Ghai on Monday

⁴ M. A. Van Zeeland *et al.*, NF **59** 086028 (2019)
⁵ Y. Ghai *et al.*, NF **61** 126020 (2021)
⁶ L. A. Charlton *et al.*, J. Comp. Phys **86** 270 (1990)

Strong NT impact on AEs at TCV

- In experiments, triangularities has a strong impact on observed NBI-driven TAEs:
 - In NT, TAEs appear with lower frequency and amplitude.
- Uncontrolled changes in many variables:
 - Density rise during NT phase (better confinement)
 - q-profile
 - Direct comparison between triangularities is difficult.
- Simulations needed to assess and isolate triangularity impact on modes evolution and FI transport.

- MEGA: 3D nonlinear hybrid kinetic-MHD
- Simulation setup for TCV
- TAEs in NT and PT
- Wave-particle resonances in the FI phase-space
- Fast-ion losses induced by TAE in NT and PT

MEGA⁷: Nonlinear 3D hybrid kinetic-MHD code

Bulk plasma

 \mathbf{PT} 0.4 Full resistive-MHD model. $\delta v_{\rm r}$ **Coupling through** 0.3 current density 0.2 **Fast-ions** Z [m] • Particle-in-cell: markers sampling distribution function. 0.1 Gyrokinetic equation (δf or *full*-f). 0.0 • 4^{th} order finite differences in **cylindrical** coordinates (R, ϕ , z). Explicit 4th Runge-Kutta for time-integration. 1.0 0.8 R [m] ⁷Y. Todo et al., PoP 5 1321 (1998)

10 Dec 2021

•

IAEA TM EPPI 2021 - Pablo Oyola

9

Simulation setup for the δ comparison

Flipped equilibrium to isolate the $+\delta$ / $-\delta$ effects on AE activity.

Simulation parameters

- δ f-method for kinetic species.
- #markers = 23M particles
- Multi-*n* simulation (n < 5)

Ad-hoc initial FI distribution

Analytical anisotropic slowing-down distribution

$$f_0 \propto e^{\frac{(\rho - \rho_0)^2}{2(\Delta\rho_0)^2}} \frac{1}{v^3 + v_{crit}^3} erfc\left(\frac{v - v_{birth}}{\Delta v}\right) e^{\frac{(\Lambda - \Lambda_0)^2}{2(\Delta\Lambda)^2}}$$

- Scan in different pitch-angle injections $\Lambda_0 \equiv \frac{\mu B_{axis}}{E}$
- Scan in different fast-ion gradient location

 ρ_0

Initial FI drive is the same for NT and PT

Analytical slowing-down distribution:

$$f_0 \propto e^{\frac{(\rho - \rho_0)^2}{2(\Delta\rho_0)^2}} \frac{1}{v^3 + v_{crit}^3} erfc\left(\frac{v - v_{birth}}{\Delta v}\right) e^{\frac{(\Lambda - \Lambda_0)^2}{2(\Delta\Lambda)^2}}$$

- Scan in different pitch-angle injections $\Lambda_0 \equiv \frac{\mu B_{axis}}{E}$
- Scan in different fast-ion gradient location

$$\gamma_{TAE} \propto \beta_{FI} \left(\frac{\partial f_0}{\partial E} + \frac{n}{\omega} \frac{\partial f_0}{\partial P_{\phi}} \right)$$

2

 ρ_0

PIASMA Science and Flasma Science and Fusion Technology

TAEs appear both in PT and NT:

• SAW continuum not affected by different Shafranov shifts in NT vs. PT.

TAEs is mitigated in NT vs PT

TAEs appear both in PT and NT:

• PT reaches an energy ~50% higher.

• NT shows a smaller growth rate.

- This trend is kept independent on the pair of parameters Λ_0 and $\rho_0.$

$\Delta E > 0 \longrightarrow \text{Energy to the FI}$ 0.75

Resonant energy exchange in FI phase-space

 $\Delta E < 0 \longrightarrow$ Energy to the wave

Power exchange in FI phase-space shows particle-

wave resonances.

 Two main regions of the phase-space providing energy to TAE.

1.00

Resonant energy exchange in FI phase-space

IAEA TM EPPI 2021 - Pablo Oyola

 Power exchange in FI phase-space shows particlewave resonances.

 $\Delta E > 0 \longrightarrow$ Energy to the FI

 $\Delta E < 0 \longrightarrow$ Energy to the wave

- Two main regions of the phase-space providing energy to TAE:
 - Wave-particle resonances⁸.

 $\omega_{\rm TAE} = n\omega_{\phi} - p\omega_{\rm pol}$

Energy [keV]

NT damps the lower bounce harmonic

- Alignment of analytical resonances with structures in FI phase-space.
- In PT, lower bounce harmonic is most excited.
- In NT, damps lower bounce harmonics.

Δ*E* [arb. units]

NT damps the lower bounce harmonic.

- Alignment of analytical resonances with structures in FI phase-space.
- In PT, lower bounce harmonic is most excited.
- In NT, damps lower bounce harmonics.
- Overall energy transfer is larger in PT.

TAE-induced FIL are 3x lower in NT

- Fast-ion losses in NT is **smaller** than its counterpart in PT.
 - 3x times lower at the peak.
 - 3x times lower integrated FIL.

• Correlated FIL bursts with TAE saturation.

• Single-*n* simulations shows similar results for a *n*=3 TAE.

Conclusions

- In experiments, TAEs appear weaker in NT than in its counterpart PT.
- MEGA sims used to isolate the δ effects.
- 50% lower energy in NT with respect to PT.
- Lower bounce harmonics are damped in NT.
- Fast-ion losses are 3x lower in NT.

