Theory for control of Alfvén instabilities and implications for anomalous electron energy transport

Jeff Lestz (UCI)
Elena Belova, Nikolai Gorelenkov, Eric Fredrickson (PPPL)
Neal Crocker, Shawn Tang (UCLA)

17th IAEA TM on Energetic Particles
Virtual
December 8, 2021
Motivation and Main Results

- **Motivation**: sub-cyclotron Alfvén Eigenmodes (AEs) have been experimentally linked to anomalous electron temperature flattening in NSTX
 - No theory quantitatively reproduces the observations

- **Goal**: predict instability conditions for realistic neutral beam (NBI) distributions using analytic theory and numerical simulations

- **Main result**: simple theory describes high frequency AE excitation and demonstrates how to stabilize modes with additional NBI source
 - Explains NSTX-U suppression of AEs with new beam source
 - Provides insight to control and study the associated electron energy transport
Outline

- Introduction: Alfvén Eigenmodes Linked to Anomalous Electron Transport
- Hybrid Simulations Reveal Complicated Stability Boundaries
- Simple Analytic Theory Explains Simulations
- Theory Yields Experimental Insights
- Injecting Multiple Beams Can Control Alfvén Eigenmodes
Outline

- Introduction: Alfvén Eigenmodes Linked to Anomalous Electron Transport
 - Hybrid Simulations Reveal Complicated Stability Boundaries
 - Simple Analytic Theory Explains Simulations
 - Theory Yields Experimental Insights
 - Injecting Multiple Beams Can Control Alfvén Eigenmodes
Anomalous T_e Flattening in NSTX Correlates with CAE/GAEs

- Beam-driven compressional (CAE) and global (GAE) Alfvén eigenmodes have been excited in NSTX(-U), MAST, DIII-D, AUG, and may be present in ITER.
- Temperature profiles cannot be explained by turbulence in gyrokinetic simulations.
- Methods to control CAEs/GAEs are essential to studying and predicting the electron energy transport that they induce.\(^1\)

\(^1\)D. Stutman et al. Phys. Rev. Lett. 102, 115002 (2009)
How Can CAEs/GAEs Affect Temperature Profiles?

Energy Channeling
- AE in core can mode convert to KAW near edge, damping on electrons
- Modifies effective beam energy deposition profile\(^2,3\)

Orbit Stochastization
- Sufficiently many unstable AEs can stochasticize electron orbits
- Enhances diffusion, transporting energy away from the core\(^4\)

\[^4\]N.N. Gorelenkov *et al.* Nucl. Fusion **50**, 084012 (2010)
Sub-cyclotron Alfvén Eigenmodes in NSTX(-U)

- **Compressional Alfvén eigenmode (CAE):**
 ideal magnetosonic mode: $\omega \approx kv_A$

- **Global Alfvén eigenmode (GAE):**
 discrete shear Alfvén eigenmode existing below minimum of Alfvén continuum: $\omega \leq \left[k_\parallel(r)v_A(r) \right]_{\text{min}}$

- CAEs/GAEs interact with fast ions through Doppler-shifted cyclotron resonance
 $$\omega - k_\parallel \langle v_\parallel \rangle = \ell \langle \omega_{ci} \rangle$$

- Observed to propagate both **co-** ($k_\parallel > 0$, $\ell = 0$) and **cntr-** ($k_\parallel < 0$, $\ell = 1$) to the beam/plasma current with $|n| = 3 - 15$, $\omega/\omega_{ci} \approx 0.1 - 1.2$
Outline

- Introduction: Alfvén Eigenmodes Linked to Anomalous Electron Transport
- Hybrid Simulations Reveal Complicated Stability Boundaries
- Simple Analytic Theory Explains Simulations
- Theory Yields Experimental Insights
- Injecting Multiple Beams Can Control Alfvén Eigenmodes
Hybrid Simulation Method

- Hybrid MHD and Particle code (HYM)
- Initial value code in tokamak geometry
- Thermal plasma: single fluid resistive MHD model
- Beam ions: full orbit kinetic particles with δf scheme
 - Captures Doppler-shifted cyclotron resonance which drives the modes
- Equilibrium includes fast ion effects self-consistently\(^5\)
- Thermal plasma and beam ions coupled through current in momentum equation

\[
\rho \frac{dV}{dt} = -\nabla P + (J - J_b) \times B - e n_b (E - \eta \delta J) + \mu \Delta V
\]

\[^5\text{E.V. Belova et al. Phys. Plasmas 10, 3240 (2003)}\]
Fast Ion Distribution Model

- Equilibrium distribution $F_0 = F_1(v)F_2(\lambda)F_3(p_\phi)$
 - Trapping parameter $\lambda = \mu B_0/\mathcal{E} \approx v_\perp^2/v^2$

 \[F_1(v) = \frac{1}{v^3 + v_c^3} \]

 \[F_2(\lambda) = \exp\left(-\frac{(\lambda - \lambda_0)^2}{\Delta \lambda^2}\right) \]

 \[F_3(p_\phi) = \left(\frac{p_\phi - p_{\min}}{m_i R_0 v - q_i \psi_0 - p_{\min}}\right)^\sigma \]
 for $v < v_0$ and $p_\phi > p_{\min}$

- NSTX: $v_0/v_A \lesssim 5$, $\lambda_0 = 0.5 - 0.7$ for original beam
- NSTX-U: $v_0/v_A \lesssim 2$, $\lambda_0 = 0$ for new beam
- Parameters matched to TRANSP ($\Delta \lambda \approx 0.3$)
Hybrid Simulations Predict Rich Mixture of CAEs/GAEs

- Parameter scan of injection geometry (λ_0) and velocity (v_0/v_A) reveals complicated stability boundaries for different mode types6
 - Simulated $|n| = 1 - 12$ separately
- GAEs excited at lower beam energy ($v_0/v_A \gtrsim 2.5$) than CAEs ($v_0/v_A \gtrsim 4$), typically with larger growth rates
- co-GAEs excited with very tangential beams
 - Anomalous cyclotron resonance ($\ell = -1$)
 - May exist in future NSTX-U experiments

6J.B. Lestz et al. Nucl. Fusion 61, 086016 (2021)
Hybrid Simulations Predict Rich Mixture of CAEs/GAEs

- Parameter scan of injection geometry (λ_0) and velocity (v_0/v_A) reveals complicated stability boundaries for different mode types6
 - Simulated $|n| = 1 − 12$ separately
- GAEs excited at lower beam energy ($v_0/v_A \gtrsim 2.5$) than CAEs ($v_0/v_A \gtrsim 4$), typically with larger growth rates
- co-GAEs excited with very tangential beams
 - Anomalous cyclotron resonance ($\ell = −1$)
 - May exist in future NSTX-U experiments

6J.B. Lestz et al. Nucl. Fusion 61, 086016 (2021)
Hybrid Simulations Predict Rich Mixture of CAEs/GAEs

- Parameter scan of injection geometry (λ_0) and velocity (v_0/v_A) reveals complicated stability boundaries for different mode types\(^6\)
 - Simulated $|n| = 1 - 12$ separately
- GAEs excited at lower beam energy ($v_0/v_A \gtrsim 2.5$) than CAEs ($v_0/v_A \gtrsim 4$), typically with larger growth rates
- co-GAEs excited with very tangential beams
 - Anomalous cyclotron resonance ($\ell = -1$)
 - May exist in future NSTX-U experiments

\(^6\)J.B. Lestz \textit{et al.} Nucl. Fusion \textbf{61}, 086016 (2021)
Realistic Simulations Motivate Development of Theory

- HYM simulations accurately model CAEs/GAEs in NSTX(-U) experiments and recover mode structures from CAE3B eigensolver.
- Theory is needed to interpret simulation results and improve understanding to develop predictive capability.

![Diagram showing HYM simulations and experiment results]
Outline

- Introduction: Alfvén Eigenmodes Linked to Anomalous Electron Transport
- Hybrid Simulations Reveal Complicated Stability Boundaries
- Simple Analytic Theory Explains Simulations
- Theory Yields Experimental Insights
- Injecting Multiple Beams Can Control Alfvén Eigenmodes
Simple Conditions Derived for Net Drive

• Fast ion drive depends on gradients of the distribution

\[\gamma \propto \int h(\lambda, \nu) \left[\left(\ell \frac{\omega_{ci}}{\omega} - \lambda \right) \frac{\partial}{\partial \lambda} + \frac{\nu}{2} \frac{\partial}{\partial \nu} \right] f_b(\lambda, \nu) d^2\nu > 0 \text{ for instability} \]

• cntr-propagating CAE/GAEs (\(\ell = +1\)) driven by \(\partial f_b/\partial \lambda > 0\)
 - \(v_0 < v_{||,\text{res}} / (1 - \lambda_0 \langle \omega_{ci} \rangle)^{3/4}\) necessary for instability

• co-propagating CAEs (\(\ell = 0\)) driven by \(\partial f_b/\partial \lambda < 0\)
 - \(v_0 > v_{||,\text{res}} / \left(1 - \frac{\langle \omega_{ci} \rangle}{2} \left[\lambda_0 + \sqrt{\lambda_0^2 + 8\Delta\lambda^2/3} \right] \right)^{5/8}\) necessary for instability

• Due to resonance condition, \(v_{||,\text{res}}(\omega/\omega_{ci}, k_\parallel/k_\perp) = (\omega - \ell \langle \omega_{ci} \rangle) / k_\parallel \)

Analytic Bounds Explain Simulation Results

- NUMERICALLY INTEGRATE FULL ANALYTIC EXPRESSION FOR GROWTH RATE TO PREDICT INSTABILITY
 - red: net fast ion drive, blue: net fast ion damping
 - gray: insufficient beam velocity for resonant interaction

\[\text{cntr-GAE } \omega / \omega_{ci} = 0.2 \]

\[\text{predicted stable} \]

\[\text{predicted unstable} \]

\[\gamma / \omega_{ci} = 0.08 \]

\[\text{co-CAE } \omega / \omega_{ci} = 0.5 \]

\[\text{predicted stable} \]

\[\text{predicted unstable} \]
Analytic Bounds Explain Simulation Results

- Numerically integrate full analytic expression for growth rate to predict instability
 - red: net fast ion drive, blue: net fast ion damping
 - gray: insufficient beam velocity for resonant interaction

- black curve: approximate analytic conditions reproduce numerical calculation
Analytic Bounds Explain Simulation Results

• Numerically integrate full analytic expression for growth rate to predict instability
 – red: net fast ion drive, blue: net fast ion damping
 – gray: insufficient beam velocity for resonant interaction

• black curve: approximate analytic conditions reproduce numerical calculation

• gold: unstable modes from HYM simulations agree with theory
Beam Parameters Determine Most Unstable Modes

- cntr-GAEs prefer $\lambda_0 \to 1$, whereas co-GAEs require small λ_0 for instability
 - Driven by opposite sign of $\partial f_0/\partial \lambda$
- co-CAEs are less unstable due to a smaller coefficient multiplying growth rate
 - $\gamma_{\ell=0} \sim (\omega/\omega_{ci})\gamma_{\ell=\pm 1}$
- cntr-GAEs can be destabilized at small v_0/v_A
 - co-GAEs require large Doppler shift
 - co-CAEs suffer relatively large $\partial f_0/\partial \nu$
Outline

- Introduction: Alfvén Eigenmodes Linked to Anomalous Electron Transport
- Hybrid Simulations Reveal Complicated Stability Boundaries
- Simple Analytic Theory Explains Simulations
- Theory Yields Experimental Insights
- Injecting Multiple Beams Can Control Alfvén Eigenmodes
For fixed NBI parameters, instability conditions constrain the spectrum of modes. Cross-comparison with NSTX database of cntr-GAEs and co-CAEs demonstrates greater than 80% agreement with theory. Blue: NSTX observations, red: HYM simulations. Gray: unstable region predicted by theory.
Theory Explains Previous Observations on DIII-D

- DIII-D low field experiments ($v_0/v_A \approx 1.5$) observed cntr-modes with $\omega/\omega_{ci} \approx 0.6$
 - Tentatively identified as CAEs, with unexplained $k_\perp \rho_\perp b < 0.8$
 - Density scaling also not Alfvénic, conflicting with dispersion relation

- Theory predicts narrow range of unstable GAEs:

\[
1 + v_0/v_A < \omega/\omega_{ci} < 1 + v_0/v_A \left(1 - \lambda_0\right)^{3/4}
\]

- Compatible with any value of $k_\perp \rho_\perp b$
- Weaker density scaling agrees with data

- Theory predicts higher frequencies for larger λ_0
- Unstable CAEs would require much higher than observed frequencies
- High frequency observations in DIII-D are more consistent with GAEs

The theory explains previous observations on DIII-D:

- DIII-D low field experiments ($v_0/v_A \approx 1.5$) observed cntr-modes with $\omega/\omega_{ci} \approx 0.6$
 - Tentatively identified as CAEs, with unexplained $k_\perp \rho_\perp b < 0.8$
 - Density scaling also not Alfvénic, conflicting with dispersion relation\(^9\)

- Theory predicts narrow range of unstable GAEs:
 \[
 \frac{1}{1+v_0/v_A} < \frac{\omega}{\omega_{ci}} < \frac{1}{1+v_0/v_A(1-\lambda_0)^{3/4}}
 \]
 - Compatible with any value of $k_\perp \rho_\perp b$
 - Weaker density scaling agrees with data

- Theory predicts higher frequencies for larger λ_0

- Unstable CAEs would require much higher than observed frequencies

- High frequency observations in DIII-D are more consistent with GAEs

GAE Stabilized with Beam Density Ramp in DIII-D

- cntr-GAE driven by sub-Alfvénic beam ($v_0/v_A = 0.8$) in DIII-D
- Beam density ramped down at constant voltage – mode vanishes\(^\text{10}\)
 - Variable beam perveance\(^\text{11}\)
- Mode identified with dispersion, resonance, and instability condition
 - Theory predicts unstable GAEs have $0.5 < \omega/\omega_{ci} < 0.8$
 - Observed mode: $\omega/\omega_{ci} = 0.58$
- HYM simulations confirmed unstable GAEs with $|n| = 22 - 24$, $m \approx 3 - 4$

Outline

- Introduction: Alfvén Eigenmodes Linked to Anomalous Electron Transport
- Hybrid Simulations Reveal Complicated Stability Boundaries
- Simple Analytic Theory Explains Simulations
- Theory Yields Experimental Insights
- Injecting Multiple Beams Can Control Alfvén Eigenmodes
NSTX-U found robust suppression of cntr-GAEs with addition of new off-axis/tangential beams12

Analytic Theory Explains cntr-GAE Stabilization on NSTX-U

• Tangential injection flips sign of $\partial f_b/\partial \lambda \rightarrow$ damping

• **Stabilization**: damping from new beam balances drive from original beam

 – 7% of fast ions in new beam predicted for complete stabilization of cntr-GAEs

 □ Very close to experiment and HYM simulations13

• Surprisingly, simulations show that tangential injection also stabilizes co-CAEs

 – Requires \sim 25% fast ions in new beam

 – Theory predicts that very perpendicular injection should also stabilize co-CAEs, challenging to verify

Stabilization Techniques for Studying Electron Transport

1. Add a new beam in a different geometry (increase damping from $\partial f_b / \partial \lambda$)
 - To suppress cntr-GAEs/CAEs, add a more tangential beam
 - explains NSTX-U GAE suppression observations
 - To suppress co-CAEs, add a very tangential or perpendicular beam
 - driven by $\partial f_b / \partial \lambda < 0$, opposite condition for cntr-CAEs/GAEs
 - near marginal stability, large radiative damping is sensitive to beam distribution
 - To suppress either, counter-inject a new beam
 - Accesses new resonance for same mode, with opposite contribution to drive

2. Add a new beam at a different voltage without changing geometry
 - Adding a beam at a lower voltage should suppress co-CAEs

3. Add resonant particles which are stabilizing ($\lambda > \lambda_0$ for cntr-GAEs)
 - Can be achieved by lengthening the tail of the distribution – RF heating?
Summary

- CAEs/GAEs were investigated in NSTX(-U) with hybrid simulations and theory
- A simple analytic theory of sub-cyclotron Alfvén eigenmode instability has been developed for realistic NBI distributions
 - **Perpendicular injection**: drives cntr-propagating CAEs/GAEs and damps co-modes
 - **Tangential injection**: damps cntr-CAEs/GAEs and can drive or damp co-modes
 - Explains experimental observations and simulations of CAE/GAE excitation and stabilization in multiple devices (NSTX, NSTX-U, DIII-D)
- **Impact**: theory for control of CAEs/GAEs will enable investigation of their role in electron energy transport and help identify transport mechanisms
- **Future Applications**: (1) project to ITER (α distribution, multiple ion species), (2) try similar approach to interpret ion cyclotron emission (ICE), and (3) model sub-cyclotron instabilities driven by runaway electrons\(^\text{14}\)

\(^{14}\)C. Liu et al. Nucl. Fusion 61, 036011 (2021)
Compressional Alfvén Eigenmodes (CAE)

- Ideal magnetosonic mode in toroidal geometry
 - Compressional polarization
 - In uniform, low β limit, $\omega = k v_A$
- Localized by 2D wave equation
 \[
 \left[\nabla_\perp^2 - V_{\text{eff}}(r, \theta) \right] \delta B_\parallel = 0
 \]
 \[
 V_{\text{eff}}(r, \theta) = k_\parallel^2 - \frac{\omega^2}{v_A^2} \approx \left(\frac{n}{R} \right)^2 - \left(\frac{\omega}{v_A} \right)^2
 \]
- $V_{\text{eff}} = 0$ coincides with Alfvén resonance, where CAE couples to kinetic Alfvén wave

$n = 4$ CAE calculated by HYM. δB_\parallel corresponds to the CAE. Coherent δB_\perp, δE_\parallel structures show the KAW.
Global Alfvén Eigenmodes (GAE)

- Discrete shear Alfvén eigenmode solutions may exist below minimum of Alfvén continuum
 - Approximate dispersion $\omega \leq \left[k_\parallel (r) v_A (r) \right]_{\text{min}}$
 - Weakly damped due to separation from continuum
- Dominant shear polarization: $\delta B_\perp \gg \delta B_\parallel$
 - In NSTX conditions, also have large compressional component $\delta B_\parallel \approx \delta B_\perp$ near edge
- CAEs/GAEs routinely observed in NSTX with $|n| = 3 - 12$ and $\omega / \omega_{ci} \approx 0.1 - 1.2$
 - ICE with $\omega > \omega_{ci}$ also present

GAE calculated by NOVA
HYM Physics Model

Fluid Thermal Plasma

\[
\rho \frac{dV}{dt} = -\nabla P + (J - J_b) \times B - e n_b (E - \eta \delta J) + \mu \Delta V
\]

\[
E = -V \times B + \eta \delta J
\]

\[
\frac{\partial B}{\partial t} = -\nabla \times E
\]

\[
\mu_0 J = \nabla \times B
\]

\[
\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho V)
\]

\[
\frac{d}{dt} \left(\frac{P}{\rho^\gamma} \right) = 0
\]

- \(\rho, V, P\) are plasma mass density, velocity, and pressure
- \(n_b, J_b\) are beam ion density and current \((n_b \ll n_e, \text{though } J_b \approx J_{th})\)

Kinetic Fast Ions

\[
\frac{dx}{dt} = v
\]

\[
\frac{dv}{dt} = \frac{q_i}{m_i} (E - \eta \delta J + v \times B)
\]

\[\delta f \text{ Scheme}\]

\[
F = F_0(\varepsilon, \mu, p, \phi) + \delta f(t)
\]

\[
w \equiv \frac{\delta f}{F}
\]

\[
\frac{dw}{dt} = -(1 - w) \frac{d \ln F_0}{dt}
\]
HYM Provides Input for Energy Transport Calculations

- Theories of CAE/GAE-induced electron energy transport require assumptions about the mode properties (frequency, amplitude, polarization, structure, etc.)
- HYM simulations generate realistic mode structures, beyond ideal MHD

![Images of CAE and KAW modes](image)

![Images of cntr-GAEs modes](image)
cntr-GAE Mode Structure from HYM

cntr-GAE \(n = 6 \), \(\lambda = 0.9 \), \(v = 5.0 \)
co-GAE Mode Structure from HYM

\[\delta B_{||} \]

\[\delta B_{\perp} \]

\(n = 8, \lambda = 0.1, \nu = 5.3 \)
Linear Simulation Stability Results

![Diagram showing growth rate vs. injection velocity for different values of n, with co-CAE, cntr-GAE, and co-GAE markers.]
• Local linear growth rate derived for realistic NBI distribution
 – Uncovers new instability regime – necessary to explain GAE excitation in NSTX-U
• **Goal**: simple expressions for fast ion drive depending on
 1. fast ion distribution parameters \((\lambda_0, v_0/v_A)\)
 2. mode parameters \((\omega/\omega_{ci}, k_{||}/k_{\perp})\)
• Approach: restrict to 2D velocity space to avoid assumptions about
 equilibrium profiles, mode structure, particle orbits, etc.
 – Does not include contribution from \(\partial f_0/\partial p_\phi\)
• Provides upper bound on net growth rate, since neglecting bulk damping sources
 – Reminder: \(\gamma_{net} = \gamma_{EP} - \gamma_{th,damp}\)
Growth Rate Calculated for Anisotropic Beam Distribution

- For a beam-like distribution, with $x \equiv v_{\perp}^2/v^2$, $u \equiv v^2/v_0^2 = v_{\parallel, \text{res}}^2/v_0^2(1 - x)$

\[
\frac{\gamma}{\omega_{ci}} \propto - \sum_{\ell} \int_{0}^{1-x} \frac{x}{(1-x)^2} \mathcal{J}_\ell \left(\frac{k_{\parallel} v_{\parallel, \text{res}}}{\omega_{ci}} \sqrt{\frac{x}{1-x}} \right) e^{-\left(x - \lambda_0 \langle \bar{\omega}_{ci} \rangle \right)^2 / \Delta \lambda^2 \langle \bar{\omega}_{ci} \rangle^2} \frac{1 + (4u)^{3/2}}{\left(\frac{2}{\Delta \lambda^2 \langle \bar{\omega}_{ci} \rangle^2} \left(x - \lambda_0 \langle \bar{\omega}_{ci} \rangle \right) \left(\frac{\ell}{\bar{\omega}} - x \right) + \frac{3}{2} \left(\frac{1}{1 + (4u)^{3/2}} \right) \right)} dx
\]

- Can integrate numerically, but further analytic progress requires approximation
Approximations Necessary to Derive Instability Conditions

1. Growth rate dominated by anisotropy for $\ell \neq 0$ resonances

\[
\frac{\omega_{ci}}{\omega} \frac{\partial f_0}{\partial \lambda} \gg \frac{v}{2} \frac{\partial f_0}{\partial v}
\]

2. “Wide beam approximation” for $\Delta x \approx 0.3$

\[
\frac{d}{dx} \frac{e^{-(x-x_0)^2/\Delta x^2}}{\Delta x^2} \approx -2(x - x_0)/\Delta x^2
\]

3. Small (or large) $k_\perp \rho_\perp b$ expansion of finite Larmor radius Bessel function terms

4. Neglect slowing down velocity dependence (weak dependence)
Approximations Necessary to Derive Instability Conditions

1. Growth rate dominated by anisotropy for $\ell \neq 0$ resonances

$$\left(\frac{\omega_{ci}}{\omega} \frac{\partial f_0}{\partial \lambda} \gg \frac{v}{2} \frac{\partial f_0}{\partial v} \right)$$

2. “Wide beam approximation” for $\Delta x \approx 0.3$

$$\frac{d}{dx} e^{-\frac{(x-x_0)^2}{\Delta x^2}} \approx -2\frac{x-x_0}{\Delta x^2}$$

3. Small (or large) $k \rho_b$ expansion of finite Larmor radius Bessel function terms

4. Neglect slowing down velocity dependence (weak dependence)

Define $\eta = v_{||,\text{res}}^2 / v_0^2$, then for $k \rho_b \lesssim 1$ and $\ell = 1$, the growth rate is proportional to

$$\gamma \propto - \int_0^{1-\eta} \frac{x(x-x_0)}{(1-x)^2} \, dx > 0 \quad \Rightarrow \quad x_0 > \frac{1 - \eta^2 + 2\eta \log \eta}{1 - \eta + \eta \log \eta}$$
Approximations Necessary to Derive Instability Conditions

1. Growth rate dominated by anisotropy for $\ell \neq 0$ resonances
 \[\left(\frac{\omega_{ci}}{\omega} \frac{\partial f_0}{\partial \lambda} \gg \frac{v}{2} \frac{\partial f_0}{\partial v} \right) \]

2. “Wide beam approximation” for $\Delta x \approx 0.3$
 \[\left(\frac{d}{dx} e^{-(x-x_0)^2/\Delta x^2} \approx -2(x - x_0)/\Delta x^2 \right) \]

3. Small (or large) $k_{\perp} \rho_{\perp} b$ expansion of finite Larmor radius Bessel function terms

4. Neglect slowing down velocity dependence (weak dependence)

Define $\eta = v_{\parallel, \text{res}}^2 / v_0^2$, then for $k_{\perp} \rho_{\perp} b \lesssim 1$ and $\ell = 1$, the growth rate is proportional to

\[\gamma \propto - \int_0^{1-\eta} \frac{x(x-x_0)}{(1-x)^2} \, dx > 0 \longrightarrow x_0 > \frac{1 - \eta^2 + 2\eta \log \eta}{1 - \eta + \eta \log \eta} \approx 1 - \eta^{2/3} \]

1% error for $0 < \eta < 1$

\[\Rightarrow v_0 < \frac{v_{\parallel, \text{res}}}{(1 - x_0)^{3/4}} \]
Serendipitous Approximations

- Where did this approximation come from?

\[f(x) = \frac{1 - x^2 + 2x \log x}{1 - x + x \log x} \approx 1 - x^{2/3} \]

Accurate on \(0 < x < 1 \) to within 1%!

- Assume \(f(x) \approx 1 - x^p \)
 - Preserves smoothness, convexity, and monotonicity
 - \(f(0) = 1 \) and \(f^{(n)}(0) \to (-1)^n \infty \) for \(0 < p < 1 \)
 - \(f(1) = 0 \) and match \(f'(1) = -p \)

- Correct boundary behavior + sufficiently smooth function \(\longrightarrow \) accurate global approximation
 - Same procedure used many times in this work
Gradients in p_ϕ Destabilize Co-Propagating Modes

- Local theory analysis neglected $\partial f_0 / \partial p_\phi$
- Effect can be determined heuristically by comparing to nonlocal theory15

$$ \gamma \propto \int d\Gamma \left[\left(\frac{l}{\bar{\omega}} - \lambda \right) \frac{\partial f_0}{\partial \lambda} + \mathcal{E} \frac{\partial f_0}{\partial \mathcal{E}} + \frac{n}{\bar{\omega} \omega_{ci}} \frac{\partial f_0}{\partial p_\phi} \right] $$

- For non-hollow distributions, $\partial f_0 / \partial p_\phi > 0$
 \rightarrow sign of n determines contribution
 - co-modes are driven, cntr-modes are damped
- HYM simulations that artificially remove $\partial f_0 / \partial p_\phi$ contribution confirm its effect for co- vs cntr-GAEs

15A.N. Kaufman \textit{et al}. Phys. Fluids \textbf{15}, 1063 (1972)
CAE/GAE Coupling Can Alter Most Unstable Modes

- Including two fluid effects, dispersions are coupled, modifying the polarization

\[
\left[1 - \frac{k^2 v_A^2}{\omega^2} \left(1 - \frac{\omega^2}{\omega_{ci}^2} \right) \right] \left[1 - \frac{k^2 v_A^2}{\omega^2} \left(1 - \frac{\omega^2}{\omega_{ci}^2} \right) \right] = \frac{\omega^2}{\omega_{ci}^2}
\]

- Changes growth rate, most unstable parts of spectrum
 - Most important for cntr-CAEs, also co-CAEs at smaller \(v_0/v_A \)

- \(\ell = 0 \) co-GAE can not exist without this coupling
Method for Inferring k_\parallel/k_\perp for CAEs

• Measured quantities: ω, k_ϕ, and v_A
• Approximate CAE dispersion relation $\omega \approx k v_A \rightarrow$ infer k
• Assume $k_\parallel \approx k_\phi = n/R$ (motivated by mode structure in simulations)
• Derive $k_\perp = \sqrt{k^2 - k_\parallel^2}$ from the above quantities
• Construct k_\parallel/k_\perp, which the CAE instability condition depends on
 – Dispersion: $\omega \approx k v_A$ + resonance: $\omega = k_\parallel v_{||,\text{res}} \rightarrow v_{||,\text{res}}/v_A \approx k/k_\parallel$
 – $\ell = 0$ co-CAE instability requires $v_{||,\text{res}}$ sufficiently small \rightarrow lower bound on $k_{||}/k_\perp$
 – Upper bound on $k_{||}/k_\perp$ is derived heuristically, based on largest radial wavelength that will fit within the minor radius
• Beam density scan in simulations shows
 $\gamma_{\text{damp}} / \gamma_{\text{drive}} \approx 20 - 60\%$
• Attributed to continuum/radiative damping since it is insensitive to viscosity and resistivity
• Electron damping (absent in simulations) calculated analytically for unstable modes
 – GAE electron damping rates are very small
 $\gamma_{\text{damp}} / \gamma_{\text{drive}} \sim 1\%$
 – CAE electron damping could be large enough to stabilize some modes near marginal stability
CAEs/GAEs May Be Present in Burning Plasmas

- ITER will have super-Alfvénic NBI and alpha particles ($v_0/v_A = 1.5 - 2$)
- Anisotropy of alphas near the edge could destabilize cntr-GAEs/CAEs
 - Similar to NSTX(-U) beam parameters
- ITER NBI distribution has $\lambda_0 = 0.3 - 0.8$ depending on radius
 - Could be either destabilizing or stabilizing (NSTX-U multi-beam suppression)

- Open question: if the modes are excited, will the anomalous electron transport also be present in ITER or is it unique to spherical tokamaks?
CAE/GAE-Induced Ion Heating Was Also Explored on NSTX

- Anomalously high $T_i > T_e$ was observed in some NBI-dominated NSTX discharges16
- Proof-of-principle stochastic heating of ions by CAEs shown in test particle simulations17
- Subsequent experimental analysis18 found CAE to thermal ion power transfer to be insufficient to explain the surplus $T_i - T_e$
- Not yet fully resolved

17 N.N. Gorelenkov \textit{et al.} Nucl. Fusion \textbf{43}, 228 (2003)
Open Questions

1. Which transport mechanism is the dominant cause of anomalous flat T_e profiles?
2. Will CAEs/GAEs be unstable in ITER? Will they induce anomalous transport?
3. What is the dominant mechanism for co-CAE stabilization by tangential injection?
4. Can the analytic stability boundaries be generalized to $\omega \gg \omega_{ci}$ in order to interpret ion cyclotron emission (ICE)?