

Measurements of Alfvén Eigenmode stability in JET D and T plasmas

R.A. Tinguely et al

17th IAEA Technical Meeting on Energetic Particles and Theory of Plasma Instabilities in Magnetic Confinement Fusion 9 December 2021

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Supported by US DOE DE-SC0014264, DE-AC05-00OR22725, DE-AC02-05CH11231, and DE-AC02-09CH11466.

With contributions from

M. Porkolab¹, P. Puglia², N. Fil³, S. Dowson³, **R. Coelho**⁴, R. Dumont⁵, A. Fasoli², M. Fitzgerald³, **V. Guillemot**⁶, D. Keeling³, **I. Kumar**⁷, M. Podestà⁸, S.E. Sharapov³, A.A. Teplukhina⁸, and JET Contributors^{*}

- ¹ MIT Plasma Science and Fusion Center, Cambridge, MA, USA
- ² Ecole Polytechnique Fédérale de Lausanne, Swiss Plasma Center, Lausanne, Switzerland
- ³ CCFE, Culham Science Centre, Abingdon, Oxfordshire, UK
- ⁴ Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Lisbon, Portugal
- ⁵ CEA, IRFM, Saint-Paul-lez-Durance, France
- ⁶ Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris, France
- ⁷ Durham University, Durham, UK
- ⁸ Princeton Plasma Physics Laboratory, Princeton, NJ, USA

* See author list of J. Mailloux et al "Overview of JET results for optimising ITER operation" to be published in Nuclear Fusion: Overview and Summary Papers from the 28th Fusion Energy Conference

Goal: Improve prediction of damping/drive of AEs and related fast ion transport in burning plasmas

- 1. Validate simulations with experimentally measured damping rates Important for ITER Fusion Power Operations (D/T) with JET DT campaign ongoing
- 2. Compare databases of stable AEs (Part 1) with unstable AEs (Part 2) Alphas expected to couple most strongly with n ~ 10-12 in ITER and intermediate n ~ 5-7 in JET
- 3. Explore isotope effects on AE stability Important for ITER Pre-Fusion Power Operations (H/He) with JET He campaign planned for 2022

Stable Alfvén Eigenmodes

AE Active Diagnostic (AEAD) actively probes \bigcirc *stable* AEs, with <10 A, |n| < 20, f = 25-250 kHz

Panis 2010 Nucl. Fusion 50 Puglia 2016 Nucl. Fusion 56

JET PSFC EPFL

Fasoli 1995 Phys. Rev. Lett. 75 Tinguely 2020 Plasma Phys. Control. Fusion 62

Radiative damping inferred from strong correlation (>0.5) for D, H, and T data

Heidbrink 2008 Phys. of Plasmas 15 Tinguely 2021 Nucl. Fusion (accepted)

Radiative damping inferred from strong correlation (>0.5) for D, H, and T data

Heidbrink 2008 Phys. of Plasmas 15 Tinguely 2021 Nucl. Fusion (accepted)

Radiative damping inferred from strong correlation (>0.5) for D, H, and T data

Heidbrink 2008 Phys. of Plasmas 15 Tinguely 2021 Nucl. Fusion (accepted)

Clear example of radiative damping in an ohmic D plasma

CSCAS and CASTOR modeling confirm n = 1 TAE at $f_0 \sim 110$ kHz

FE

Kerner 1998 J. Computational Physics 142 Huysmans 2001 Phys. Plasmas 8

JET PSFC EPF

Clear example of collisional damping in an ohmic T plasma

CASTOR finds good agreement in frequency and damping rate at early times

JET PSFC EPFL SCCFE

Unstable Alfvén Eigenmodes

Robust identification of unstable MHD

"Most unstable" mode numbers agree with theory, $n = aB_T Z_f e/q \sqrt{8E_f m_f} \sim 5$

Heidbrink 2002 Phys. of Plasmas 9

Increasing ICRH/NBI power tends to drive/damp high frequency modes

Summary and outlook

- 1. Stable Alfvén Eigenmodes
 - Databases assembled for H, D, T (and DT) plasmas
 - Radiative damping clearly identified in database and ohmic D plasma \rightarrow Compute γ/ω_0 and compare with experiment
 - Collisional damping dominates in an ohmic T plasma
 → Analyze similar cases in H, D, and DT plasmas
- 2. Unstable Alfvén Eigenmodes
 - Database assembled for D plasmas \rightarrow Assemble for H, T, DT plasmas
 - Most unstable modes in the TAE frequency range are n \sim 4-6
 - Drive/damping of these modes increases with ICRH/NBI power
 - \rightarrow Much to explore in mode amplitudes, growth rates, fast ion losses,...
- \rightarrow In high-performance DT plasmas, assess alpha contribution to drive

Bonus slides

Clear example of radiative damping in JPN 96182-96184

Confirmed by MHD modeling

21 fast magnetic probes used

