Paper Code: #101

Paper title: Spatio-temporal evolution of sodium combustion aerosol and temperature distribution during sodium pool fire in a confined environment

Dr. Amit KUMAR,
Assistant Professor, HBNI
Aerosol Transport & Biodiversity Section
Radiological and Environmental Safety Division
Safety, Quality & Human Resource Management Group
Indira Gandhi Center for Atomic Research
Kalpakkam -603102, India.
Content of the presentation

Aerosol sources, nature, and consequences
Background or Introduction
Scope and Objective of the study
Experimental facility and Aerosol metrological devices
Results and discussion
Summary and conclusion
Future Work
Aerosol sources, nature, and consequences

<table>
<thead>
<tr>
<th>Source</th>
<th>Nature</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under Severe Accident (CDA) condition of SFRs</td>
<td>Coolant, fuel and FP aerosols generated inside RCB, transport through leak paths</td>
<td>In-containment and Environment source estimation, Radiation and chemical hazard to the public & occupational workers,</td>
</tr>
</tbody>
</table>
Introduction

In case of CDA in SFRs, sodium will be ejected from the reactor vessel into the RCB and resulted in sodium fire.

Released sodium in RCB vigorously reacts with the containment atmosphere leading to temperature and pressure rise.

Reaction products (Na2O and Na2O2), starts to nucleate, condensate and coagulate, leading to the formation of sodium aerosol.

The oxides aerosol reacts with moisture and converted to the hydroxide instantaneously. The hydroxide aerosol gets converted to sodium carbonate upon reaction with CO₂ then it further converts to bicarbonate.

The generated aerosol gets dispersed and suspended in RCB based on geometry of the building and degree of turbulence.

These sodium aerosols along released RN (fuel & FP) remains suspended in containment till they settle down or leak to the environment.

EST primarily depends on the dynamics of sodium aerosols inside the containment and leak rate of the containment.
Introduction

It is essential to carry out a safety analysis of SFRs using computational tools and models shall be validated with experimental data, particularly aerosol dynamics inside the containment along with thermal hydraulics.

Most codes assume uniform aerosol concentration in large containment buildings and the evolution of suspended aerosol characteristics was predicted.

In actual case a non-uniform concentration is expected, which leads to stratification of aerosols inside the containment.

Towards assessment of aerosol dynamics in realistic scenario, spatial-temporal characteristics of sodium aerosol and temperature distribution were studied by conducting sodium pool fire experiments in a large chamber.
Scope of the study

Knowledge of sodium and fission product aerosol dynamics along with temperature distribution in the containment would help:

• Better analysis of thermal loadings on the containment,

• To evaluate the amount of aerosol suspended in the containment (available for release with time) and activity associated with it, considering sodium burning scenarios and aerosol behaviour,

• Behavior of mixed (Na + FP) aerosol in closed containment at higher temperature & pressure,

• To decide containment functional requirement in terms of allowable leak rate,

• Estimation of Environment Source Term.
Objective of the present work

Study on spatio-temporal sodium aerosol characteristics and temperature distribution in the large chamber:

- Burning characteristics of sodium pool fire,
- Temperature distribution inside the facility,
- Multi-elevation sampling to study stratification of aerosol,
- Evolution of sodium aerosol size distribution and size growth,
- Deposition of the aerosol on the inner surface of the chamber,

- To produce representative experimental data for the evolution of spatial-temporal characteristics of sodium aerosol produced inside a closed enclosure.
- Applicability of a zero-dimensional numerical model for evolution of aerosol characteristics & compared with the experimental observations.
MINA facility consists of

- A closed rectangular steel chamber of size 6.0 m x 5.45 m x 4.6 m (~ 150 m³),
- Designed to withstand pressure of 1 bar at 300 ºC,
- Chamber is provided a leak-tight door of 2.0 m x 1.5 m,
- Facility has a dedicated sodium supply system, instrumentation and control room,
- Facility has state-of-the-art equipment’s and instruments to monitor dynamic pressure, spatial gas, and wall temperature distribution, data acquisition, and two viewing ports for the high-speed video imaging system.
SS tray of 0.5 m x 0.5 m x 0.05 m and pool area → 0.25 m².

Tray and sodium supply tank were heated to ~ 350 °C by using surface heaters while maintaining the argon pressure in the vessel at ~ 0.05 bar.
Design of sodium pool fire experiments (2/3)

- Multi-elevation (1.2, 3.0, 3.9 m) sampling for characterization of aerosol.
- Total sampling positions 12 → 4 Nos. in each elevation.

3-D View of MINA chamber and sampling layout.

Schematic of aerosols sampling for BE.
Design of sodium pool fire experiments (3/3)

Matrix for monitoring the spatio-temporal temperature distribution during pool fire.

- Total 40 Nos. → K – type thermocouples,
- TE and ME → 9 Nos., BE → 7 Nos.
- Pool area → 4 No. and Above the pool → 4 Nos.
- Near the chamber wall → 5 Nos. and Floor → 2 Nos.
Aerosol metrological devices

Both off-line and real-time sampling techniques were employed.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Principle</th>
<th>Measured Characteristics</th>
<th>Measuring Range</th>
<th>On-line/ Off-line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter paper sampler</td>
<td>Gravimetric + chemical</td>
<td>Mass concentration</td>
<td>--</td>
<td>Off-line</td>
</tr>
<tr>
<td>Low-Pressure Impactor</td>
<td>Impaction + Gravimetric</td>
<td>Mass-size distribution</td>
<td>0.08 - 35 µm</td>
<td>Off-line</td>
</tr>
<tr>
<td>Aerosol Spectrometer</td>
<td>Light Scattering</td>
<td>Number/ mass-size distribution</td>
<td>0.3 – 20 µm</td>
<td>On-line</td>
</tr>
<tr>
<td>Turn Table Technique</td>
<td>Mass deposit</td>
<td>Deposition flux/ velocity</td>
<td>--</td>
<td>Off-line</td>
</tr>
<tr>
<td>SS collection plates</td>
<td>Chemical</td>
<td>Aerosol fallout</td>
<td>--</td>
<td>Off-line</td>
</tr>
</tbody>
</table>

SS collection plates of 10 cm x 10 cm were placed on the floor, pasted on the sidewall and downward-facing surface of the chamber to collect cumulative aerosol deposition mass.

27-09-2022
Results and Discussion (1/12)

Sodium combustion and aerosols generation

- 2 kg sodium was drained into the tray in ~ 15 s.
- Visibility has been entirely lost 15 minutes from the start of the experiment.
- As soon as the liquid sodium is drained into the SS tray, a sodium pool was formed and burning started instantaneously.

Optical images show the upward movement of aerosol inside the chamber during combustion period due to a strong thermal gradient in the vertical direction.
Results and Discussion (2/12)

Temperature distribution in pool and above the pool region

- Sodium pool temperature increased to a maximum of $685 \pm 5.2 \, ^\circ C$ in ~ 10 minutes and remained at $\sim 660 \pm 5.0 \, ^\circ C$ until the completion of sodium combustion (~ 25 minutes).

- Temperature near the sodium pool surface was $\sim 550 \pm 4.1 \, ^\circ C$ (at $50 \, mm$ above the collection tray) and decreased with vertical distance.

- In about 3 hours, the temperature of the sodium pool decreased to less than $150 \pm 1.1 \, ^\circ C$.

Evolution of temperature during sodium pool fire.
Temperature distribution inside the experimental chamber

- Maximum recorded temperature near the centre sampling points at 1.2 m is 126 °C.
- Maximum difference in temperature between the chamber wall and air at 8.0 mm distance inside the chamber is about 6.0 °C.
- Temperature gradient near the chamber wall → 7.5 °C/cm.
- Vertical temperature distribution has two steep gradients,
 - Temperature decreases from 685 °C to 200 °C at a 0.3 m distance,
 - Temperature decreases from 200 °C to 59 °C over a 3.40 m distance.

Evolution of temperature distribution inside the experimental hall at 1.2 m (a), 3.0 m (b) and 3.85 m (c) elevation and near the wall region (d) at the bottom elevation
Evolution of Relative humidity

- RH% was observed to reduce from the initial value of $56 \pm 0.5\%$ to $24 \pm 0.2\%$ in 20-min (during pool fire).

- The change may be attributed to the chemical reaction between sodium/ sodium aerosols with moisture and temperature-dependent variation in RH%.

- The degree of change of moisture saturation also depends on temperature of the air in the chamber.

- The gradual increase in humidity after 20 min is due to decrease in temperature of the chamber when sodium burning is in quenching stage.

Temporal change of RH% along with gas temperature.
Results and Discussion (5/12)

Sodium burning characteristics and aerosol generation rate

➢ After 24 hours of the experiment, the sample was taken from the residue of the tray for determining un-burnt sodium.

➢ Post residue analysis by hydrogen displacement method reveals that about 10% of sodium was left un-burnt.

➢ From the burnt sodium mass and duration of the fire, the average burning, and aerosol release rates are calculated.

• Estimated average burning rate → 17.3 kg/m²*hr

• Aerosol release rate are → 0.24 g/s.

<table>
<thead>
<tr>
<th>Experimental parameters</th>
<th>Units</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity of sodium used</td>
<td>kg</td>
<td>2.0</td>
</tr>
<tr>
<td>Sodium pool area</td>
<td>m²</td>
<td>0.25</td>
</tr>
<tr>
<td>Duration of pool fire</td>
<td>hr</td>
<td>0.42 (25 min)</td>
</tr>
<tr>
<td>Quantity of un-burnt sodium</td>
<td>kg</td>
<td>0.2</td>
</tr>
<tr>
<td>Quantity of burnt sodium</td>
<td>kg</td>
<td>1.8</td>
</tr>
<tr>
<td>Burning rate</td>
<td>kg/m²*hr</td>
<td>17.28</td>
</tr>
<tr>
<td>Aerosol generation rate*</td>
<td>kg/hr</td>
<td>0.86 (0.24 g/s)</td>
</tr>
</tbody>
</table>

*Assume 20% of the burned sodium manifested as an aerosol.
Results and Discussion (6/12)

Spatio-temporal distribution of sodium aerosols concentration

- Maximum average suspended aerosol concentration at the bottom, middle and top elevation is 4.01 ± 1.08, 2.42 ± 0.52 and 2.87 ± 0.92 g/m3.

- Average suspended concentration shows that the concentration is higher at the TE than at the middle and bottom in the first 20 minutes.

- After cease of the fire, the BE concentration increased due to settling of the suspended aerosols from higher elevations.

- Based on the aerosol concentration measurements, it is understood that the aerosol distribution is not well mixed throughout the experimental periods.

Aerosol mass concentration as a function of time.
Results and Discussion (7/12)

Evolution of sodium aerosol size distribution

- Higher fraction of particles is formed in the sub-micron size (< 0.5 μm) at the start of the experiment with single-mode, and with the progress of time, aerosols size distribution became multi-mode characterized by a dominant peak in the sub-micron region (< 0.5 μm) and a small peak in the range of 0.57 – 1.26 μm, 1.26 – 4.47 μm and few particles also found greater than 5.0 μm.

- During the initial period, the aerosol size ranged from 0.1 μm to 25 μm with five modes (0.15, 0.75, 1.65, 6.0 and 19.0 μm), and at a later stage, samples have four size modes (0.35, 1.25, 6.0 and 19.0 μm).

- Overall, the aerosol generated during the sodium pool fire varied in three orders in size and ranges from 0.1 μm to 25 μm.
Aerosol mass deposition velocity

- Turntable equipment was used to determine the aerosol mass flux (J) and mass deposition velocity (Vdep).

- The deposition velocities were estimated by using the formula given below:

\[
V_{dep}(\text{m/s}) = \frac{J(\text{g/m}^2\text{s})}{C(\text{g/m}^3)},
\]

- The aerosol deposition velocity ranged from 0.059 ± 0.005 to 0.289 ± 0.025 cm/s as time increases from 25 – 75 min.

- The lowest deposition velocity for sodium aerosols is 0.06 ± 0.01 cm/s when the aerosol mass concentration is 4.01 g/m³.

- The measured deposition velocity is increased from 0.06 cm/s up to 0.29 cm/s and the average deposition velocity of the sodium aerosols is observed to be 0.15 ± 0.07 cm/s.
The fraction of total deposited sodium aerosol mass is dominant on the floor (91.96 %) than the side walls (6.70 %) and downward facing surface (1.35%).

The aerosol deposited in the horizontal surfaces (floor of the chamber) is dominated by gravitational settling, while vertical surfaces are diffusion and thermophoretic forces.
Aerosol modelling and comparison with observations

➢ Theoretical model used in the present simulation is based on the first-order differential equations solved by the finite difference method to predict the aerosol characteristics as a function of time in a confined environment.

➢ In the present simulation,
 • Coagulation due to Brownian motion,
 • Polydispersity of aerosol,
 • Coagulation correction factor for the entire range of particles.

➢ Deposition mechanism considered are:
 • Gravitational settling,
 • Wall plating,
 • Thermophoretic and,
 • Ventilation.

Input parameter for simulation

- Most of the input parameters were derived from the present experimental results.
- Shape factor and boundary layer values are taken from literature.
- The initial aerosol diameter (MMD) and GSD are 0.2 µm and 2.0 respectively and have been taken from present measurements.

<table>
<thead>
<tr>
<th>Experimental parameters</th>
<th>Units</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosol source rate</td>
<td>g/s</td>
<td>0.42</td>
</tr>
<tr>
<td>Aerosol source duration</td>
<td>s</td>
<td>1500</td>
</tr>
<tr>
<td>Mass Median Diameter (MMD)</td>
<td>µm</td>
<td>0.2</td>
</tr>
<tr>
<td>Geometric Standard Deviation (GSD)</td>
<td>--</td>
<td>2.0</td>
</tr>
<tr>
<td>Density of aerosol</td>
<td>g/cm³</td>
<td>2.13</td>
</tr>
<tr>
<td>Shape factor</td>
<td>--</td>
<td>1.0</td>
</tr>
<tr>
<td>Diffusion boundary layer thickness</td>
<td>µm</td>
<td>1.0</td>
</tr>
<tr>
<td>Bulk gas temperature</td>
<td>ºC</td>
<td>50</td>
</tr>
<tr>
<td>Chamber wall temperature</td>
<td>ºC</td>
<td>31</td>
</tr>
<tr>
<td>Temperature gradient between gas and wall</td>
<td>ºC/cm</td>
<td>7.5</td>
</tr>
</tbody>
</table>
Results and Discussion (12/12)

Temporal change of concentration of aerosol.

Evolution of aerosol median size growth.

Average suspended aerosol concentration is well matched for peak concentration.

Experimentally observed decay of aerosol concentration is faster than simulated maybe because of Turbulent deposition and coagulation, extra surface available in the chamber, etc.

After about 100 min, the aerosol concentration deposits ~ 98%, 96% and 90% of maximum suspended concentration at the top, middle and bottom elevation, respectively. While it is 82% as per the prediction.
Assumptions

- The spatial distribution of aerosol characteristics was not considered for theoretical calculation.

- The gas bulk flow is zero and the particles are homogeneously distributed over the simulation domain.

- The impaction process (which may be significant only at high convection velocities) is neglected.

- Turbulent deposition and coagulation are not included in the simulation.
Conclusions

A zero-dimensional model predicts the overall trend of evolutions of aerosol mass concentration but notably deviated from the data in all specific values.

The evolutions of aerosol median size by theoretical simulation capture the overall trend reasonably.

After about 100 min, the suspended aerosol concentration is ~ 2%, 4% and 10% of maximum concentration at top, middle and bottom elevation, respectively, while it is 18% as per the prediction.

About 92 % of aerosol is deposited on the floor of the chamber, and the remaining aerosol is deposited on the chamber walls and downward-facing surfaces.

The effect of hygroscopic growth, turbulent and gravitation agglomeration is not considered in the present simulation. The above parameters will also influence the predictions.

The present experimental study has given significant insight into understanding the heterogeneous distribution of aerosols along with temperature distribution in closed containment.
The experience gained from the experiment will be used to improve the methodology and instrumentation for capturing the thermal-driven turbulent phenomenon.

The sodium fire dynamics, aerosols behaviour, chemical kinetics and thermal hydraulics are challenging problems that can be addressed with 3-D CFD or fire dynamics codes, which will be taken up.
The authors thank Director, IGCAR for his encouragement and support for conducting this work.

The authors wish to acknowledge Mr T. Lokesh and Mr S.S. Ramesh of SED for the erection of sampling lines/ sensors and pressure testing of the test chamber.

The authors thank Miss Hyma Kumari for sodium handling, loading and post-experimental cleaning.

The authors would like to acknowledge Ms B. Malarvizhi, Mr S.S. Murthy and Mr Avinash Aacharya for providing the heating control, instrumentation, and data acquisition systems.

The authors also would like to thank Mr M. Kumaresan for optical video imaging.
Thank you for your kind attention

• Any questions and valuable suggestions?