

MODELLING OF THE DYNASTY EXPERIMENTAL FACILITY FOR NATURAL CIRCULATION UNDER DISTRIBUTED HEATING

<u>Carolina Introini</u>, Gabriele Benzoni, Antonio Cammi, Stefano Lorenzi Technical Meeting on state-of-the-art Thermal Hydraulics of Fast Reactors, 26-30/09/22

Introduction Introduction

Introduction Natural Circulation

 Flow behaviour in loops is governed by density wave instabilities (Welander).

 Possible flow inversion and recirculation regions

POLITECNICO MILANO 1863

Introduction DYNASTY Configuration

- IHG simulated through DEHS
- No insulation
- Maximum heating power per leg (step)
- Working fluid: water
- Temperature working threshold: 95 °C
- Clockwise mass flow taken as positive

Carolina Introini

Introduction Coupled System

POLITECNICO MILANO 1863

Outline

Experimental Campaign (DYNASTY) DYNASTY Configuration

7/3<u>3</u>

Carolina Introini

Carolina Introini

Carolina Introini

Carolina Introini

Carolina Introini

Carolina Introini

Experimental Campaign (Coupled) eDynasty Experimental Campaign (HHHC)

Carolina Introini

Experimental Campaign (Coupled) eDynasty Experimental Campaign (VHHC)

Carolina Introini

- Object-Oriented simulation language
- Acausal description using physical and engineering principles and balance equations
- Stand-alone components blocks linked by interfaces
- Differential Algebraic Equations, that must be translated into a Stiff ODE system
- Non-negligible dependency on the chosen integration algorithm.

DYNASTY Modelling DYNASTY Model

First Model

k-parameters av

Upgraded Model

POLITECNICO MILANO 1863

....

18/33

DYNASTY Modelling DYNASTY Model

Carolina Introini

Model upgrades

- Heat losses between the facility and the environment
- Finned cooler model also accounting for natural circulation with air
- Churchill-Bernstein correlation for *h*
- Pressure losses for the MFM
- Heat losses for the mass flow meter (non-insulated pipe)
- Loading tank simulated imposing the pressure of the loop equal to the ambient one

DYNASTY Modelling Components Details

POLITECNICO MILANO 1863

20/33

Algorithm	Method	Stiff	Implicit	Order	Complete
DASSL	Linear multi-step (BDF)	Yes	Yes	1-5	Yes
Radau2a	Single-step (RK)	Yes	Yes	5	Yes
SDIRK34hw	Single-step (RK)	Yes	Yes	4	Yes
ESDIRK45a	K45a Single-step (RK)		Yes	5	Yes
LSODAR	Linear multi-step (mixed)	Yes	Both	1-5	No

Table: Performance parameter: CPU-time ; test variable: mass flow rate

Model Analysis Numerical Integration Algorithms

 Chattering during simulations (triggering of logic conditions which leads to generation of events and increased CPU time)

Radau2a

outperforms all other methods, dampening the oscillations in the initial steps

Model Analysis Model Parameters Sensitivity

- Sensitivity analysis of the model changing fan speed (user-controlled input, constraint for the heat exchange with the environment).
- Understand where the effect of the fan is most visible, characterise the heat transfer in the cooler
- Conditions: air temperature 22 °C, power 450 W (5/8 GV1, 3/8 GV2)

POLITECNICO MILANO 1863

Model Analysis Model Parameters Sensitivity

 Sensitivity analysis of the model changing cooler air temperature

(ambient condition, linked to the heat dissipated by the cooler).

 Conditions: air flow rate 4 m³s⁻¹, power 450 W (5/8 GV1, 3/8 GV2)

POLITECNICO MILANO 1863

Model Validation Validation: HHHC GO1 Case

POLITECNICO MILANO 1863

Model Validation Validation: HHHC GO1 Case

Carolina Introini

Model Validation Validation: VHHC GV1 Case

Carolina Introini

Model Validation Validation: VHHC GV1 Case

POLITECNICO MILANO 1863

Fan speed	GO1 Cool	GO1 Heat	GV1 Cool	GV1 Heat	GV2 Cool	GV2 Heat
0&	Within	Within	Within	3.77 °C	2.56 °C	Within
25&	0.48 °C	Within	6.11 °C	Within	5.54 °C	0.34 °C
50&	0.16 °C	0.05 °C	5.94 °C	Within	5.65 °C	Within
75&	Within	Within	6.06 °C	Within	6.35 °C	Within

Table: Temperature results (error bounds \pm 2.15 °C), square root mean distance between TC $_2$ and TC $_1$

Fan speed	GO1 Cool	GO1 Heat	GV1 Cool	GV1 Heat	GV2 Cool	GV2 Heat
0&	129.29%	2.64%	192.31%	10.23%	115.93%	5.63%
25&	16.1%	2.79%	108.24%	7.91%	99.36%	5.86%
50&	14.81%	1.28%	101.27%	6.74%	100.45%	5.64%
75&	39.38%	2.53%	120.67%	5.91%	99.39%	5.39%

Table: Mass flow rate results (error bounds \pm 0.2138 g/s), mean relative error

Possible causes of discrepancy:

- Turbulence phenomena
- Recirculation in the tank region
- Possible boiling near the inner pipe walls
- Non-perfect agreement between initial conditions
- Note: the DYMOLA model cannot simulate two-phase flows

Model Validation LES Modelling

Comparison of mass flow-rate between previous RANS results (POLIMI) and the result of the LES simulations (uniform heating at 1kW and cooler temperature at 180°C, left ; uniform heating at 5.3kW and cooler temperature at 240°C)

POLITECNICO MILANO 1863

Carolina Introini

POLITECNICO MILANO 1863

32/33

Carolina Introini

- Installation of the insulant layer
- New validation campaign with both water and glycol
- Inclusion of the feed and discharge tanks in the model
- Realisation of different power transients
- 3D analysis of the cooling transient
- Coupled model with eDYNASTY facility

33/33

THANK YOU FOR THE ATTENTION!

Carolina Introini

DYNASTY CHARACTERISTICS			
Size	Height: 3.09 m Width: 3.10 m Piping: φ 42.16 mm ; thickness 2 mm		
Thermal carrier	Water TYFOCOR LS (propylene glycol)		
Material	AISI 304/316 L		
Heating system	Fibreglass knitted and braided electrical strips (up to 5.3 kW)		
Heat exchanger	Finned tube coupled with a cooling fan		
Temperature range	20 / 95°C (water)		
Pressure	1 atm (filling tank top)		

34/33

Additional Slides DH Case

Carolina Introini

Additional Slides DH Case

Additional Slides Coupled System

POLITECNICO MILANO 1863

37/33

Additional Slides Coupled System

DYNASTY-eDYNASTY coupling

- Pipe-in-pipe heat exchanger
- Internal pipe (DYNASTY) diameter is 38mm
- Annulus pipe (eDYNASTY) diameter is 60mm

