

TIFONE: a designoriented code for the inter-wrapper flow and heat transfer in liquid metal-cooled reactors

<u>G.F. Nallo</u>, G. Grasso, F. Lodi

¹NEMO Group, Dipartimento Energia, Politecnico di Torino, Torino, Italy ²ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Bologna, Italy

Presented on 28 September 2022 at: IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors @ C. R. ENEA, Camugnano, Italy

LFR core design the need for dedicated tools

- A comprehensive approach to core design:
 - Identify safety and technological constraints → derive design guidelines
 - Design individual components
 - Manage interfaces with other reactor systems
 - Optimize performance by working on available margins
- Computational tools in support of core design:
 - Design-Oriented Codes (DOCs):
 - Target: equilibrium
 - Balanced error contributions, fast-running
 - Clear application domain
 - Verification-Oriented Codes (VOCs):
 - Target: high accuracy
 - Comprehensive physical treatment
 - $\circ\,$ Sophisticated models and methods

- Three "pillars" for core design:
 - Neutronics (NE)
 - Thermal-hydraulics (TH)
 - Thermo-mechanics (TM)

Motivation to develop a new code: TIFONE, a DOC for LFR core TH

- Inter-Wrapper (IW) region is inherent in LFR design (width established by core TM design)
 - <u>Among the core TH design goals</u>: to avoid cold by-passes and excessive thermal gradients among opposite faces of the assembly ducts (**bowing**)
 - <u>To be achieved by working on</u>: IW coolant flow
- \rightarrow Core TH design requires knowledge of:
 - Full-core axial and radial coolant temperature distribution
 - Axial and perimetrical wrapper temperature profile for each SA
- Literature review:
 - COBRA-WC, NETFLOW
 - SUPERENERGY-2, SE2-ANL
 - \rightarrow No available DOC for core TH design (*)
 - (*) Note on ANTEO+ and porous medium approach

Nuclear Engineering

MOdeling Group

TIFONE was developed according to ENEA's • **Software Quality Management** System → necessary if intend to use the code to support licensing

- Application domain:
 - Steady-state
 - Liquid metal coolant (*)
 - Closed, hexagonal SAs
 - Forced and mixed convection regimes (not purely natural circulation)
- Calculation domain:
 - Axially: between dividing and merging of inter- and intra-SA flows
 - Radially: IW region of the entire core

(*) Na, Pb or PBE

Nuclear Engineering

MOdeling Group

Problem solving approach and spatial discretization

Problem solving approach

Data modelling

Code functional modelling

Detailed code design

Implementation Verification

/alidation

- Based on the requirements specification, need to select the most suitable calculation approach
- The **Sub-Channel (SC)** method was selected → balance between complexity and accuracy

- Spatial discretization:
 - Axial: arbitrary node distribution
 - Radial: arbitrary number of *edge SCs* + one *corner SCs* for each corner.

Physico-mathematical model: mass conservation

Problem solving approach

Data modelling

Code functional modelling

 \sum_{3}^{nal} Detailed code design

Implementation Verification

/alidation

$$A_i \Delta z \frac{\partial}{\partial t} \left\langle \rho_i \right\rangle + \Delta \dot{m}_i = -\Delta z \sum_{j=1}^{N_{nei,i}} W_{ij}$$

- Forced convection: neglect inter-SC mass transfer
- Mixed convection: assume inter-SC mass transfer entirely due to buoyancy effects
- Onset of mixed convection for $Y_{mix} = Gr/Re^2 > 0.002$ [Jackson]
- Boundary condition: \dot{m}_{in} . User provides $\dot{m}_{in,core}$ and f_{BP} ; repartition among SCs is then computed via *flow split* calculation

Data modelling

Problem solving Data modelling Code function modelling	onal g	Detailed	code des	ign ^I	mplementa Verificati	tion / on	\rangle	Validatio	on
 Identify the needed input and output quantities, based on: Requirements stated in the SRS 			Column nAxNod zAxNod cRadDiscr	Data type int float (nAxNod+1) string Materia	Number of Axial coor boundaries Label ide lected app	americs on f axial nodes rdinates of no s ntifying the roach for the	Notes ode se- ra-		
 Specific needs of the selected problem- solving approach 			Column cLm cWrap	Data type string string	Description Label identify coolant type Label identifying	ing the the wrap-	Notes		in case ='default'. ch SA in case ='manual',
• Identify the quantities to be treated by the co-	de		cLmDens	string	per material de Label identifying the selected correlation for in coelent dentify in			- defined radial n in case	
 Based on the selected problem-solving approach 		Column temp	Data type float(nSc, nAxNod)	SC TH Description Temperature	I data Notes			='manual'	
 Include user inputs to modify code behavior as needed 		velc dens enth	float(nSc, nAxNod) float(nSc, nAxNod) float(nSc,	Flow velocity Coolant densit Enthalpy	ty				_
	Column tempInlet mdotIn iwFrac	Data type float float float	nAxNod) Boundary c Description Core inlet tem Total core mas Fraction of th	onditions perature s flow rate te core mass	Notes The IW flow rate	e is then		ass	
	presInlet	float	flow rate flowin region Core inlet pres	ng in the IW	distributed among based on the flow culation Defaults to 0.0 Pa	the SCs split cal-	for pressure for velocity for temperatur	e	

Functional modelling (I)

Functional modelling (II)

Boundary cond.

Problem solving approach

Data modelling

External

entity

Code functional modelling

Materials

Models

Detailed code design

SC geometry

Verification

Exchange

Convergence

To Output

Next function

Connectivity

Initialize

SC auxiliary

variables

Problem dimensions

Numerics

SC auxiliary

variables

Constants

Check if

mixed

convection

Mixed

convection

solution

- Aim: identify the transformations ulletundergone by data contained in data structures.
- Increase level of detail until • functions are highly *consistent*
- ٠

Process

Data structure

Exchanged variable

Functional modelling (III)

KALLA IW flow experiments

14/28

Problem sol approac	lving h	\geq	Data modelling	Code functional modelling Detailed code design Implementation / Verification	Validatio
Quantity	Unit	Value	Meaning	• KALLA inter-wrapper flow	
Outer dimensions				KALLA mici-wrapper now	881
FF	$\mathbf{m}\mathbf{m}$	65.00	Outer flat-to-flat distance	experiment in SESAME	303
w	$\mathbf{m}\mathbf{m}$	2.0	Wall thickness		
δ	$\mathbf{m}\mathbf{m}$	3.0	Gap width	project	
Bundle dimensions					
D	$\mathbf{m}\mathbf{m}$	16.0	Rod diameter	• Three /-pin bundles including	
L_{heat}	$\mathbf{m}\mathbf{m}$	600.0	Rod heated length	inter wronner channels	
L_{tot}	$\mathbf{m}\mathbf{m}$	1400.0	Rod total length		
P	$\mathbf{m}\mathbf{m}$	20.50	Rod pitch		
d	$\mathbf{m}\mathbf{m}$	4.40	Wire diameter	• Axial and radial temperature	
Н	$\mathbf{m}\mathbf{m}$	262.0	Wire pitch	and valacity manguramenta	
W	$\mathbf{m}\mathbf{m}$	20.75	Wall distance		
Ratios				available	
P/D	-	1.281	Pitch-to-diameter		
H/D	-	16.375	Wire pitch-to-diameter	(A) (C 4) (C 3)	•
W/D	-	1.297	Wall-distance-to-diameter		Λ
Flow areas				Air cooler) }
A_{bdl}	mm^2	1704.2	Bundle cnannels (A-C)	ELOW	\square
A_{int}	mm^2	73.6	Bundle internal sub-channels	Test section $(\text{Inter-wrapper flow})$	Ad 1 d
A_{edge}	mm^2	152.9	Bundle edge sub-channels		\sim
A_{corner}	mm^2	57.5	Bundle internal sub-channels		$\mathcal{A}(5)\mathcal{A}(1)$
A_{gap}	mm^2	331.9	Gap channel (D)	FMs Sumptank	
Hydraulic diameters	3				$\mathbf{A}(0)$
$d_{h,bdl}$	$\mathbf{m}\mathbf{m}$	10.31	Bundle channels (A-C)		
$d_{h,int}$	$\mathbf{m}\mathbf{m}$	9.1	Bundle internal sub-channels	separation $(q \ 5) q \ 1) q \ 2$) /
$d_{h,edge}$	$\mathbf{m}\mathbf{m}$	11.6	Bundle edge sub-channels		/
$d_{h,corner}$	$\mathbf{m}\mathbf{m}$	9.1	Bundle internal sub-channels		/
$d_{h,gap}$	$\mathbf{m}\mathbf{m}$	5.85	Gap channel (D)	Vortex FM	

Overview on validation dataset

Problem solving Dat approach

Data modelling

Code functional modelling

Detailed code design

Implementation / Verification

Validation

- Both symmetric and asymmetric cases performed
- Flow conditions: laminar/turbulent
- Heat flux boundary conditions: from **three standalone ANTEO+runs** (one for each FA) with total power to IW rescaled to match measured power
- Mixed convection solution

Note: the code can simulate also other LMs (e.g. Na), therefore other validation cases considering these fluids can be considered in the future.

<u>Acknowledgement</u>: access to SESAME dataset courtesy of Dr. M. Tarantino, access to full dataset courtesy of Dr. J. Pacio.

Nominal conditions:

Quantity	Unit	Value	Meaning	Notes
\dot{m}	$\rm kg/s$	0.686	Inlet mass flow rate	
T_{in}	$^{\circ}\mathrm{C}$	199.25	Inlet LBE temperature	
q_{tot}	kW	3.700	Total power to IW flow	
q''	kW/m^2	f(z)	Surface heat flux	From ANTEO+

Symmetric validation cases

Quantity	Unit	Case 1	Case 3	Case 6	Case 8
<i>ṁ</i> – IW mass flow rate	kg/s	0.686	0.517	0.342	0.17
$\dot{m}_A \sim \dot{m}_B \sim \dot{m}_C$	kg/s	3.55	3.55	3.55	3.55
<i>q_{tot}</i> – Total power to IW flux	kW	3.700	3.010	2.160	1.170
$q_A \sim q_B \sim q_C$	kW	30.00	30.00	30.00	30.00
<i>T_{in}</i> – Inlet LBE temperature	°C	199.25	199.20	199.10	199.10

Note: here and thereafter, uncertainties on measured quantities are not indicated for the sake of clarity G. F. Nallo | IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 28 September 2022

Symmetric case #1: axial temperature profiles

G. F. Nallo | IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 28 September 2022 17/28

Symmetric case #1: radial temperature profiles

Nuclear Engineering MOdeling Group

- Satisfactory agreement on velocity profile
 - To be assessed: local measurements, but averaged quantities per SC computed
- Very good agreement on radial coolant temperature distribution
- To be confirmed by considering a case with larger number of SAs

G. F. Nallo | IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 28 September 2022 18/28

Symmetric case #1: wrapper temperatures

Symmetric cases #3,6,8: axial temperature profiles

G. F. Nallo | IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 28 September 2022 21/28

Aymmetric validation cases: reduced flow rate in C by 20%

Quantity	Unit	Case 1	Case 3	Case 6	Case 8
\dot{m} – IW mass flow rate	kg/s	0.686	0.517	0.342	0.17
$\dot{m}_A \sim \dot{m}_B$	kg/s	3.55	3.55	3.55	3.55
m _C	kg/s	2.86	2.86	2.86	2.86
<i>q_{tot}</i> – Total power to IW flux	kW	3.700	3.010	2.160	1.170
$q_A \sim q_B \sim q_C$	kW	30.00	30.00	30.00	30.00
<i>T_{in}</i> – Inlet LBE temperature	°C	199.25	199.20	199.10	199.10

Asymmetric case #42: axial temperature profiles

Asymmetric case #42: radial temperature profiles

Nuclear Engineering MOdeling Group

- Satisfactory agreement on velocity profile
 - To be assessed: local measurements, but averaged quantities per SC computed
- Very good agreement on radial coolant temperature distribution
- To be confirmed by considering a case with larger number of SAs

G. F. Nallo | IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 28 September 2022 24/28

Asymmetric case #42: wrapper temperatures

Asymmetric cases # 45,48,51: axial temperature profiles

G. F. Nallo | IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 28 September 2022 26/28

Asymmetric cases # 45,48,51: axial temperature profiles

 \dot{m}_{IW} reduced

G. F. Nallo | IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 28 September 2022 27/28

Conclusions and perspective

- Conclusions:
 - A new DOC, TIFONE, was developed for the SC analysis of the IW flow and heat transfer in (H)LMCRs
 - Code development was performed according to ENEA Software Quality Assurance Procedures
 - Validation against KALLA experimental data shows promising results, which degrade towards the free convection
- Ongoing activities:
 - Benchmark against CFD (porous medium approach) for ATHENA core simulator
 - Inclusion in the ENEA DOC suite (e.g. to be coupled with ANTEO+)
- In perspective:
 - More validation data are needed to qualify the capabilities of the code in more reactorrelevant scenarios (e.g. ATHENA, CLEAR-S)
 - Empirical correlations for ε_{ij} and κ_{ij} might be derived from CFD calculations

Thanks for your kind attention

Backup slides

19/05/2021 - Interview for EUROfusion Researcher Grants 2021 - G. F. Nallo

Nuclear fission reactors generations

Nuclear Engineering

MOdeling Group

	Gen I		Gen II		Gen I	11 - E	Gen III+	1.1	Gen IV
1950	1960	1970	1980	1990	2000	2010	2020	2030	

Generation-IV fission reactors

- GIF objectives:
 - Sustainability
 - Improve fuel utilization
 - Minimize long-term waste
 - Economics
 - \circ Reduce life cycle costs
 - Minimize financial risks
 - Safety and reliability:
 - o Operational safety and reliability
 - Reduced core damage probability
 - $\circ\,$ Eliminate need for off-site power response
 - Proliferation resistance
- 6 potential reactor designs being considered

- Fast reactors:
 - Burn MAs \rightarrow reduce long-term radiotoxicity
 - Breed fuel \rightarrow fuel utilization efficiency
 - Low moderation → need large fissile inventory
 - Harsh neutron damage (higher burnup, harder spectrum)

HLMCRs: advantages and challenges

- Features of HLMCRs:
 - High core outlet temperature: thermal efficiency ↑
 - Large margin to boiling:
 - o No need for pressurization
 - o No core voiding
 - Low reactivity with air and water (vs. SFR)
 - High heat transfer capability
 - High coolant density
 - o **natural circulation** for decay heat removal
 - Strong coolant-structure interactions
 - Corrosion/erosion of structures
 - Risk of coolant freezing
 - Difficult inspection (coolant opacity)

 Advanced Lead-cooled Fast Reactor European Demonstrator (ALFRED)

Coolant inlet T	673 K
Maximum fuel T	~2270 K
Maximum core Δp	100 kPa
Total electric power	~120 MWe
System efficiency	~40 %

Nuclear Engineering

MOdeling Group

Asymmetric validation cases: unheated bundle A

199.2 ± 0.2	3.58 ± 0.07	3.58 ± 0.07	3.56 ± 0.07	0.69 ± 0.01	0.00 ± 0.00	30.00 ± 0.30	30.00 ± 0.30	232.1 ± 0.2
199.2 ± 0.2	3.58 ± 0.07	3.58 ± 0.07	3.56 ± 0.07	0.69 ± 0.01	0.00 ± 0.00	30.00 ± 0.30	30.00 ± 0.30	231.9 ± 0.2
199.2 ± 0.2	3.59 ± 0.07	3.60 ± 0.07	3.57 ± 0.07	0.52 ± 0.01	0.00 ± 0.00	30.00 ± 0.30	30.00 ± 0.30	232.6 ± 0.2
199.2 ± 0.2	3.59 ± 0.07	3.60 ± 0.07	3.57 ± 0.07	0.52 ± 0.01	0.00 ± 0.00	30.00 ± 0.30	30.00 ± 0.30	232.7 ± 0.2
199.1 ± 0.2	3.59 ± 0.07	3.59 ± 0.07	3.57 ± 0.07	0.34 ± 0.01	0.00 ± 0.00	30.00 ± 0.30	30.00 ± 0.30	233.4 ± 0.2
199.1 ± 0.2	3.59 ± 0.07	3.59 ± 0.07	3.57 ± 0.07	0.34 ± 0.01	0.00 ± 0.00	30.00 ± 0.30	30.00 ± 0.30	233.4 ± 0.2
199.1 ± 0.2	3.60 ± 0.07	3.60 ± 0.07	3.57 ± 0.07	0.17 ± 0.00	0.00 ± 0.00	30.00 ± 0.30	30.00 ± 0.30	233.8 ± 0.2
199.1 ± 0.2	3.60 ± 0.07	3.60 ± 0.07	3.57 ± 0.07	0.17 ± 0.00	0.00 ± 0.00	30.00 ± 0.30	30.00 ± 0.30	233.6 ± 0.2
	$\begin{array}{c} 199.2 \pm 0.2 \\ 199.2 \pm 0.2 \\ 199.2 \pm 0.2 \\ 199.2 \pm 0.2 \\ 199.1 \pm 0.2 \end{array}$		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Asymmetric case #11: axial temperature profiles

G. F. Nallo | IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 27 September 2022 35/10

Asymmetric case #11: radial temperature profiles

Asymmetric case #11: wrapper temperatures

Asymmetric cases # 13,15,17: axial temperature profiles

Asymmetric cases # 13,15,17:

di Torino Department of Energy "G.Ferraris" radial velocity and temperature profiles

Politecnico

G. F. Nallo | IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 27 September 2022 39/10

Aymmetric validation cases: unheated bundle C

031	199.2 ± 0.2	3.59 ± 0.07	3.58 ± 0.07	3.55 ± 0.07	0.69 ± 0.01	30.00 ± 0.30	30.00 ± 0.30	0.00 ± 0.00	231.8 ± 0.2
032	199.2 ± 0.2	3.60 ± 0.07	3.58 ± 0.07	3.55 ± 0.07	0.69 ± 0.01	30.00 ± 0.30	30.00 ± 0.30	0.00 ± 0.00	231.8 ± 0.2
033	199.1 ± 0.2	3.59 ± 0.07	3.59 ± 0.07	3.57 ± 0.07	0.52 ± 0.01	30.00 ± 0.30	30.00 ± 0.30	0.00 ± 0.00	232.1 ± 0.2
034	199.1 ± 0.2	3.59 ± 0.07	3.59 ± 0.07	3.57 ± 0.07	0.52 ± 0.01	30.00 ± 0.30	30.00 ± 0.30	0.00 ± 0.00	232.2 ± 0.2
035	199.1 ± 0.2	3.60 ± 0.07	3.59 ± 0.07	3.60 ± 0.07	0.34 ± 0.01	30.00 ± 0.30	30.00 ± 0.30	0.00 ± 0.00	232.2 ± 0.2
036	199.1 ± 0.2	3.60 ± 0.07	3.59 ± 0.07	3.60 ± 0.07	0.34 ± 0.01	30.00 ± 0.30	30.00 ± 0.30	0.00 ± 0.00	232.4 ± 0.2
037	199.1 ± 0.2	3.57 ± 0.07	3.57 ± 0.07	3.58 ± 0.07	0.17 ± 0.00	30.00 ± 0.30	30.00 ± 0.30	0.00 ± 0.00	233.1 ± 0.2
038	199.0 ± 0.2	3.57 ± 0.07	3.57 ± 0.07	3.58 ± 0.07	0.17 ± 0.00	30.00 ± 0.30	30.00 ± 0.30	0.00 ± 0.00	232.9 ± 0.2

Note: in this case calorimetric measurements were unavailable \rightarrow *use* q_{tot} *as computed by ANTEO*+

Asymmetric case #32: axial temperature profiles

G. F. Nallo | IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 27 September 2022 41/10

Asymmetric case #32: radial temperature profiles

G. F. Nallo | IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 27 September 2022 42/10

Asymmetric case #32: wrapper temperatures

Asymmetric cases # 34,36,38: axial temperature profiles

G. F. Nallo | IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 27 September 2022 44/10

Asymmetric cases # 34,36,38: radial temperature profiles

G. F. Nallo | IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 27 September 2022 45/10

Aymmetric validation cases: reduced flow rate in C by 40%

054	199.1 ± 0.2	3.60 ± 0.07	3.58 ± 0.07	2.22 ± 0.04	0.69 ± 0.01	30.00 ± 0.30	30.00 ± 0.30	30.00 ± 0.30	255.0 ± 0.2
055	199.1 ± 0.2	3.60 ± 0.07	3.58 ± 0.07	2.21 ± 0.04	0.69 ± 0.01	30.00 ± 0.30	30.00 ± 0.30	30.00 ± 0.30	255.0 ± 0.2
056	199.1 ± 0.2	3.59 ± 0.07	3.58 ± 0.07	2.15 ± 0.04	0.51 ± 0.01	30.00 ± 0.30	30.00 ± 0.30	30.00 ± 0.30	256.9 ± 0.2
057	199.1 ± 0.2	3.58 ± 0.07	3.58 ± 0.07	2.15 ± 0.04	0.51 ± 0.01	30.00 ± 0.30	30.00 ± 0.30	30.00 ± 0.30	256.9 ± 0.2
058	199.1 ± 0.2	3.59 ± 0.07	3.58 ± 0.07	2.15 ± 0.04	0.34 ± 0.01	30.00 ± 0.30	30.00 ± 0.30	30.00 ± 0.30	257.8 ± 0.2
059	199.0 ± 0.2	3.58 ± 0.07	3.58 ± 0.07	2.15 ± 0.04	0.34 ± 0.01	30.00 ± 0.30	30.00 ± 0.30	30.00 ± 0.30	257.8 ± 0.2
060	199.0 ± 0.2	3.58 ± 0.07	3.57 ± 0.07	2.15 ± 0.04	0.17 ± 0.00	30.00 ± 0.30	30.00 ± 0.30	30.00 ± 0.30	259.0 ± 0.2
061	199.0 ± 0.2	3.58 ± 0.07	3.57 ± 0.07	2.15 ± 0.04	0.17 ± 0.00	30.00 ± 0.30	30.00 ± 0.30	30.00 ± 0.30	259.0 ± 0.2

Aymmetric case #55: axial temperature profiles

G. F. Nallo | IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 27 September 2022 47/10

Aymmetric case #55: radial temperature profiles

G. F. Nallo | IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 27 September 2022 48/10

Aymmetric case #55: radial temperature profiles

Asymmetric cases # 57,59,61: axial temperature profiles

G. F. Nallo | Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 27 September 2022

Asymmetric cases # 57,59,61: radial temperature profiles

G. F. Nallo | IAEA Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors | C. R. ENEA, Camugnano, Italy | 27 September 2022 51/10