Contribution ID: 9 Type: not specified

Impact of using realistic partition functions to calculate kilonova opacities

On August 17, 2017, the LIGO-VIRGO collaboration observed a neutron star merger thanks to the first detection of gravitational waves. They also detected an explosion of hot and radioactive matter called a kilonova [1]. In the latter, there are nuclear reactions that form heavy nuclei (heavier than iron) such as lanthanides (Z = 57 –71) which play a particular role. In fact, given their rich spectra, they strongly contribute to the opacity affecting radiation emission [2]. In order to interpret the spectrum of a kilonova, it is therefore crucial to precisely know the radiative parameters characterizing these elements. Over the past few years, several studies have been carried out (see e.g. [3-4]), for the first degrees of ionisation (up to 3+) but almost all these investigations were limited to the analysis of kilonovae in a temperature range below 20 000 K. To extend the study to early phases of kilonovae (i.e. T > 20~000 K), it is essential to know the radiative parameters of lanthanide ions in higher charge stages (see e.g. [5-7]). Thanks to the calculation of lanthanides' atomic data for different degrees of ionization, we can calculate the expansion opacities using the expansion formalism [8-10].

In all of the works mentioned (except in [7]) the partition function, U(T), was approximated to the statistical weight of the ground level, g_0 , for the computation of the Sobolev optical depth. This approximation has a significant impact on the computed opacities. The main goal of this present work is to show how it can affect the expansion opacity for a couple of lanthanide examples, namely for samarium (Sm) in the case of early-phase kilonova conditions (t=0.1 day after the merger), which is associated with moderately-charged species (Sm V - XI) and for neodymium (Nd) in the case of plausible conditions in the kilonova ejecta that should take place about 1 day after the neutron star merger (NSM), corresponding to the presence of lowly-ionized elements in the ejecta (Nd II - IV) [11].

- 1. B. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)
- 2. D. Kasen et al., Nature 551, 80 (2017)
- 3. Gaigalas G., Kato D., Rynkun P., Radziute L., Tanaka M., ApJS, 240, 29, (2019)
- 4. Tanaka M., Kato D., Gaigalas G., Kawaguchi K., MNRAS, 496, 1369, (2020)
- 5. Carvajal Gallego H., Berengut J. C., Palmeri P., Quinet P., MNRAS, 509,6138, (2022)
- 6. Carvajal Gallego H., Berengut J. C., Palmeri P., Quinet P., MNRAS, 513,2302, (2022)
- 7. Carvajal Gallego H., Deprince, J., Berengut J. C., Palmeri P., Quinet P., MNRAS, 518, 332-352, (2023)
- 8. Karp H., Lasher G., Chan K. L., Salpeter E. E., ApJ, 214, 161, 1977
- 9. Eastman R. G., Pinto P. A., ApJ, 412, 731, 1993
- 10. Kasen D., Thomas R. C., Nugent P., ApJ, 651, 366, 2006
- 11. Carvajal Gallego H., Deprince, J., Godefroid, M., Goriely, S., Palmeri P., Quinet P., Eur. Phys. J. D, submitted (2023)

Presenting Author

Helena Carvajal Gallego

Presenting Author Affiliation

UMons

Presenting Author Gender

Female

Country

Presenting Author Email Address

helen a. carvajal gallego @umons. ac. be

Primary author: CARVAJAL GALLEGO, Helena (UMons)

Co-authors: Mr DEPRINCE, Jérôme (ULB); Mr GODEFROID, Michel (ULB); GORIELY, Stéphane (ULB); Mr

PALMERI, Patrick (UMons); Mr QUINET, Pascal (UMons)

Presenter: CARVAJAL GALLEGO, Helena (UMons)

Session Classification: Poster Session

Track Classification: Astrophysical Plasmas