Precision medicine in radiotherapy; discover a potential biomarker for treatment resistance

Endang Nuryadi¹, Takahiro Oike², Handoko¹, Tiara Bunga Mayang Permata¹, Tatsuya Ohno², Soehartati A. Gondhowiardjo¹

- 1. Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- 2. Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan

Corresponding author: bob.nuryadi@gmail.com

Introduction

Radiotherapy is an important modality of therapy in cancer treatment. Despite of advances in technology and cancer genomics, treatment of cancer is still a big challenge, and the mutation signatures of radioresistant tumors have not yet been fully elucidated. Radiation therapy technique is evolving over time, as increasing of radiation conformity will increase therapeutic ratio, as well as the development of particle and heavy-ion therapy which provide hopes.

Precision cancer medicine is a treatment for cancer which uses the genetic information of individual tumors to guide the treatment, has become widespread in cancer treatment, especially in the field of clinical oncology. Advances in next-generation sequencing technologies provide the identification of genetic alterations that make tumor cells responsive to molecularly targeted drugs. This also showed the probability such genetic alterations may contribute to cancer cell radiosensitivity. However, genetic alterations profile in cancers associated with resistant to radiotherapy have not been fully elucidated.

Methods

We analyzed a unique set of clinical specimens from a uterine cervical cancer that repeatedly locally recurred after multiple rounds of radiotherapy (Fig. 1). We performed next-generation sequencing with an Ion AmpliSeq Comprehensive Cancer Panel that covers 95.4% of the exons of the 409 cancer-related genes.

Results

Exon sequencing of 409 cancer-related genes in the treatment-naïve tumor and the tumors that recurred after initial and secondary radiotherapy identified (i) activating mutations in *PIK3CA* and *KRAS*, and putative inactivating mutations in *SMAD4*, as trunk mutation signatures that persisted over the clinical course; and (ii) mutations in *KMT2A* and *TET1* as acquired mutation signatures observed only in recurrent tumors after radiotherapy (Fig. 2). Comprehensive mining of published *in vitro* genomics data pertaining to radiosensitivity revealed that simultaneous mutations in *KRAS* and *SMAD4*, which have not been described previously in uterine cervical cancer, are associated with cancer cell radioresistance (Fig. 3).

34	y.o., Adenocarcinoma of L	Jterine Cer	vical Cancer pT1b2N1Mx	
Year	Event	Sample	Treatment	Months
20xx	First diagnosed (treatment-naïve tumor)	T1		0
20xx		Normal	Surgery	1
201x			Adjuvant chemotherapy	3
20xx + 1	First recurrence at vaginal stump			11
20xx + 1			Radiotherapy (EBRT + Intracavitary brachytherapy)	13
20xx + 2	Second recurrence	T2		31
20xx + 2	at vaginal stump		Interstitial brachytherapy (ISBT)	32
20xx + 3	Third recurrence at vaginal stump	Т3		46
20xx + 3			Interstitial brachytherapy (ISBT)	47
20xx + 5	Patient died			71

Figure 1. Clinical history of the patient

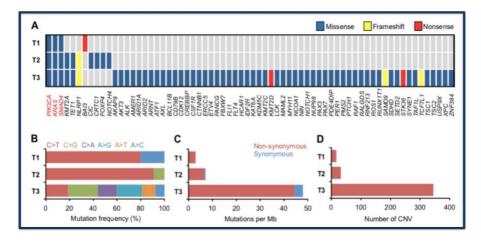


Figure 2. Somatic mutations in treatment-naïve and recurrent tumors

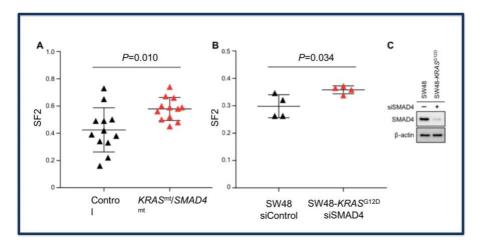


Figure 3. Simultaneous mutations of KRAS and SMAD4 associated with less radiosensitivity

Conclusion

The results of this study indicated that next-generation sequencing analysis of clinical specimens is a promising strategy to explore the mutation signatures that contribute to tumor radioresistance, which is worth pursuing with larger cohorts in the future.