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Abstract

The initial material composition of the nitride spent nuclear fuel (SNF) was calculated by the methods of thermodynamic modeling. The process of interaction of nitride SNF with CdCl2 and with PbCl2 in molten LiCl-KCl eutectic is studied. It is shown that the chlorination process takes place in two stages. Both the rate of the process and the composition of the resulting products significantly depend on temperature.
1. [bookmark: _GoBack]INTRODUCTION
At present, in Russia, within the framework of the Breakthrough project, an intensive development of a pyrochemical (anhydrous) method for reprocessing nitride spent nuclear fuel (SNF) is underway. The pyrochemical method is devoid of the disadvantages inherent in the hydrometallurgical method, such as prolonged exposure of fuel before processing, a large volume of liquid radioactive waste, etc. [1-4].
The process of mild chlorination of spent nuclear fuel with its simultaneous transfer to a dissolved state can be considered as the head operation of the pyrochemical reprocessing scheme. Mild chlorination refers to chlorination without the use of chlorine gas. Instead, it is technologically more convenient to use chlorinating agents - for example, CdCl2 or PbCl2.
The aim of this work is to thermodynamically simulate the process of dissolution of components of nitride SNF in molten LiCl-KCl eutectic using CdCl2 or PbCl2 as chlorinating agents. 
Spent nuclear fuel is a complex, multicomponent system. It is difficult to study both because of the complexity of its composition, as well as because of its high radioactivity. Thermodynamic modeling methods make it possible to assess the composition and properties of spent nuclear fuel, compare various processing methods, and select optimal conditions.
2. BASIS OF CALCULATIONS 
Thermodynamic modeling was carried out using the HSC Chemistry 9.9 software package [5]. The calculation of the thermodynamic equilibrium of systems is carried out by solving a mathematical problem to find the minimum of Gibbs free energy. The extremum is found taking into account some restrictions and assumptions in the mathematical model. The initial conditions are the amount of substance of the compounds, the temperature of the process and the pressure in the system. A detailed description of the calculation methodology is described in [6]. 
By default, the activity coefficients of all compounds are taken equal to 1. But when modeling the equilibrium composition of mixtures in molten LiCl-KCl eutectic, we set many activity coefficients ourselves, using the literature data. Activity coefficients of (CdCl2) = 0.03; (PbCl2) = 0.4 [7], trichlorides of rare earth elements 0.01 [8]. As for actinide chlorides: (UCl3) = 0.001,  (UCl4) = 10-4 [9]. Activity coefficient of PuCl3 was taken similar to UCl3.

3. RESULTS OF THERMODYNAMIC SIMULATION
SNF material composition
The first step in modeling the SNF reprocessing processes is to calculate the material composition of the nitride SNF. As the initial data, we used the model elemental composition of spent nitride nuclear fuel given in TABLE 1, combined from the data [10-12]. 

TABLE 1. MODEL ELEMENTAL COMPOSITION OF SPENT NITRIDE NUCLEAR FUEL COMPILED FROM DATA [10-12].

	№
	Compound/
element
	Amount of substance, mol. %
	№
	Compound/
element
	Amount of substance, mol. %

	1
	N
	47.9
	23
	Y
	0.0722

	2
	U
	37.6
	24
	I
	0.0710

	3
	Pu
	6.67
	25
	Rb
	0.0632

	4
	Xe
	0.872
	26
	Ag
	0.0555

	5
	Mo
	0.826
	27
	Cd
	0.0448

	6
	Ru
	0.745
	28
	Sn
	0.0352

	7
	Zr
	0.719
	29
	Pm
	0.0234

	8
	Cs
	0.716
	30
	Eu
	0.0200

	9
	Nd
	0.624
	31
	Gd
	0.0186

	10
	Pd
	0.578
	32
	Np
	0.0141

	11
	Ce
	0.389
	33
	Se
	0.0124

	12
	Ba
	0.282
	34
	Sb
	0.0106

	13
	C14
	0.244
	35
	Cm
	0.0073

	14
	Rh
	0.230
	36
	He
	0.00538

	15
	La
	0.215
	37
	In
	0.00447

	16
	Tc
	0.204
	38
	Br
	0.00396

	17
	Pr
	0.200
	39
	Tb
	0.00117

	18
	Sm
	0.174
	40
	Dy
	0.00105

	19
	Sr
	0.133
	41
	H3
	0.00054

	20
	Te
	0.126
	42
	Ge
	0.000360

	21
	Am
	0.0888
	43
	As
	0.000110

	22
	Kr
	0.0736
	
	
	

	Сумма
	
	
	
	99.999



The main elements are nitrogen, uranium, plutonium. Among the fission products, it is worth noting the noble metals - ruthenium, palladium and rhodium; rare earth elements, cesium and zirconium. The behavior of these elements will be given special attention in this article. 
Based on the data on the elemental composition, the material composition of the nitride SNF was calculated at 700 °C. This temperature was chosen on the basis of data on the diffusion coefficients of elements in nitride fuel [13] and estimates of fuel rod temperatures during reactor operation, which are 1200 - 1500 °C. Also, for completeness of the calculation, the missing thermodynamic parameters of some nitrides of actinides and lanthanides were estimated using the data [14, 15]. 
Table 2 shows the material composition of the nitride SNF according to the results of thermodynamic modeling. Here are 68 compounds out of 1018 formed. The total content of compounds not listed here does not exceed 0.002 mol. %.



TABLE 2. MATERIAL COMPOSITION OF NITRIDE SNF AT 700 °C BASED ON THE RESULTS OF THERMODYNAMIC MODELING

	№
	Compound/
element
	Amount of substance, mol. %
	№
	Compound/
element
	Amount of substance, mol. %

	1
	(U0.8Pu0.2)N
	44.9
	35
	GdN
	0.0384

	2
	UN
	34.6
	36
	EuTe
	0.0378

	3
	PuN
	4.81
	37
	BaC2
	0.0346

	4
	U2N3
	3.09
	38
	NpN
	0.0292

	5
	Xe(g)
	1.80
	39
	Cd(g)
	0.0280

	6
	ZrN
	1.49
	40
	SrTe
	0.0253

	7
	NdN
	1.29
	41
	MoC
	0.0249

	8
	CeN
	0.804
	42
	SrSe
	0.0244

	9
	Mo
	0.781
	43
	SrC2
	0.0244

	10
	Cs(g)
	0.497
	44
	LaSb
	0.0201

	11
	URu3
	0.467
	45
	CmN
	0.0150

	12
	Cs
	0.428
	46
	Sr3N2
	0.0121

	13
	LaN
	0.425
	47
	He(g)
	0.0111

	14
	Tc
	0.422
	48
	In
	0.00924

	15
	PrN
	0.412
	49
	Cs2(g)
	0.00763

	16
	UPd3
	0.398
	50
	Mo3C2
	0.00731

	17
	Ba
	0.391
	51
	RbI
	0.00563

	18
	SmN
	0.361
	52
	Rh
	0.00488

	19
	Mo2C
	0.346
	53
	EuN
	0.00351

	20
	Cs2Te
	0.198
	54
	CsBr
	0.00328

	21
	MoN0.5
	0.187
	55
	Ba3N2
	0.00272

	22
	AmN
	0.181
	56
	TbN
	0.00242

	23
	Sr
	0.164
	57
	CsI(g)
	0.00218

	24
	Rh3U
	0.157
	58
	DyN
	0.00217

	25
	Kr(g)
	0.152
	59
	PrSb
	0.00183

	26
	YN
	0.149
	60
	BaBr2
	0.00166

	27
	Ru
	0.140
	61
	CsRb(g)
	0.00165

	28
	CsI
	0.137
	62
	CsBr(g)
	0.00121

	29
	Ag
	0.115
	63
	BaSe
	0.00104

	30
	Ba2Sn
	0.0727
	64
	C
	0.000979

	31
	Cd
	0.0645
	65
	BaI2
	0.000752

	32
	Rb
	0.0635
	66
	Ge
	0.000744

	33
	Rb(g)
	0.0597
	67
	BaH2
	0.000488

	34
	PmN
	0.0484
	68
	BaTe
	0.000452

	Total
	99.998%



Actinides and lanthanides are found in their mononitrides - AmN, CmN, PuN and LaN, CeN, PrN, NdN, PmN, SmN, EuN, GdN. The main phase (U0.8Pu0.2)N, in which the nitrides of the remaining actinides and lanthanides are dissolved. 
Noble metals are mainly found in the form of intermetallic compounds URu3, UPd3 and URh3. Their formation is noted in [16]. A small part of noble metals is in free form.
Almost all iodine is combined with cesium and rubidium, CsI and RbI. And since there is little iodine in the system, the remaining cesium and rubidium, apparently, remain in free form.
Zirconium is in the form of its ZrN nitride. Molybdenum also partially forms nitrides, but due to their instability it remains in a free form with a small impurity of MoN0.5.





Soft chlorination of SNF in LiCl-KCl eutectic 
[bookmark: _Hlk73126839][bookmark: _Hlk73126825]Chlorinating agent: CdCl2
The SNF chlorination process with its simultaneous transformation into a dissolved state can be considered as the first stage in the technology of SNF nitride reprocessing. A molten mixture of LiCl - KCl of eutectic composition (58.8 mol% LiCl and 41.2 mol% KCl) was chosen as a solvent. It is technologically more convenient to use for chlorination not gaseous chlorine, but softer chlorinating agents, for example, p-metal chlorides. Soft chlorination is a technologically convenient method for the initial opening of nitride SNF, and in our case, a method for its dissolution in the LiCl-KCl melt. 
During chlorination, the following reactions take place:
	
	(1)

	
	(2)


Where An are actinides and Ln are lanthanides.
The main element of spent nuclear fuel is uranium. Its chlorination proceeds according to reaction (3).
	
	
	(3)


However, simultaneously with reaction (3), reactions of the formation of UNCl, U2N3, UN2 and nonstoichiometric nitrides of the UN1.55, UN1.69, UN1.73 type always proceed.
	
	
	(4)

	
	
	(5)

	
	
	(6)

	
	
	(7)


In [17], it was experimentally demonstrated that at 500 °C only ~ 30% UN interacts with CdCl2 according to reaction (3) with the formation of UCl3. The rest of the uranium was found as a black precipitate consisting of a mixture of insoluble stoichiometric and non-stoichiometric nitrides and nitride UNCl. Fig. 1 shows the temperature dependences of the Gibbs free energy of formation of reactions 3 - 5. 
[bookmark: _Hlk72929110][image: ]
FIG. 1. Temperature dependence of the Gibbs energy change for reactions 3 - 5.
Up to 600 °C, the reactions with the formation of UCl3 and UNCl proceed in parallel and the chlorination products of uranium nitride will be these two compounds, as well as a mass of non-stoichiometric uranium nitrides. However, at temperatures above 615 °C, UNCl and other insoluble nitrides begin to interact with an excess of CdCl2 to give the target product, UCl3. 

	
	
	(8)

	
	
	(9)

	
	
	(10)

	
	
	(11)



 Thus, it can be concluded that there are two stages in the chlorination process. At temperatures below 615 °C, only the first stage takes place with the formation of UNCl, U2N3, UN2 and nonstoichiometric nitrides UN1.55, UN1.69, UN1.73. Above 615 °C, the second stage becomes thermodynamically possible, in which all intermediate products react with an excess of CdCl2. Note that at 615 °C the Gibbs energy of the reactions only changes sign from plus to minus. It is possible that in order to achieve reaction rates sufficient for practice, a higher temperature will be needed. For example, in [2, 18] it was demonstrated that at 750 °C and some excess of CdCl2, the interaction of UN and CdCl2 proceeds according to the overall reaction (3). No insoluble products were found.
 FIG. 2 shows the result of thermodynamic modeling of the chlorination process of 1 mol of UN at 750 °C in a simplified form that is easy to understand. The figure shows the stages through which the process goes. The abscissa shows the amount of CdCl2 added to the system.
 [image: ]
FIG. 2. Equilibrium composition of the UN + CdCl2 system depending on the amount of CdCl2 added to the system at 750 °C.

Looking at FIG. 2, two stages of the soft chlorination process can be distinguished. The first stage with the formation of UNCl and nonstoichiometric uranium nitrides occurs in the region of a lack of cadmium chloride in the system with respect to the stoichiometry of reaction (3). When cadmium chloride is added to the system, the formed non-target products are chlorinated with the formation of UCl3 and partially UCl4. 
[bookmark: _Hlk73126488]For visual clarity of the calculation, we will take the amount of the substance of the compounds equal to their molar percentages from TABLE 1. Thus, the calculation will be carried out for 100 mol of SNF. We will choose argon in the amount of 50 mol as the atmosphere. The amount of the eutectic substance will be taken as 100 mol (58.8 mol LiCl and 42.2 mol KCl). We’ll take a twofold excess of the chlorinating agent (300 mol). The calculation results are presented in TABLE 3.

TABLE 3. COMPONENTS FORMED AFTER SOFT CHLORINATION OF NITRIDE SNF USING CdCl2 IN LiCl-KCl EUTECTIC AT 750 °C BASED ON THE RESULTS OF THERMODYNAMIC MODELING

	[bookmark: _Hlk72924806]№
	Compound/
element
	Amount of substance, mol. %
	№
	Compound/
element
	Amount of substance, mol. %

	1
	UCl3(l)
	70.9
	25
	SmCl2
	0.149

	2
	PuCl3(l)
	13.0
	26
	MoC
	0.147

	3
	UCl4(l)
	2.18
	27
	Kr(g)
	0.144

	4
	Xe(g)
	1.70
	28
	YCl3(l)
	0.141

	5
	Ru
	1.46
	29
	RbCl(l)
	0.123

	6
	CsCl(l)
	1.40
	30
	Sn
	0.0669

	7
	ZrN
	1.36
	31
	Li3Cl3(g)
	0.0662

	8
	NdCl3(l)
	1.22
	32
	C(g)
	0.0605

	9
	Mo
	0.892
	33
	MoN0.5
	0.0597

	10
	CeCl3(l)
	0.760
	34
	ZrCl4(g)
	0.0432

	11
	Rh
	0.448
	35
	LiCl(g)
	0.0416

	12
	Tc
	0.399
	36
	EuCl2(l)
	0.0390

	13
	UPd3
	0.376
	37
	GdCl3(l)
	0.0362

	14
	BaCl2
	0.356
	38
	Ag3I3(g)
	0.0318

	15
	LaCl3
	0.271
	39
	Li2Cl2(g)
	0.0318

	16
	SrCl2(l)
	0.259
	40
	PmCl2
	0.0307

	17
	CdTe
	0.247
	41
	Mo3C2
	0.0294

	18
	PrCl3
	0.215
	42
	NpCl3
	0.0276

	19
	Mo2C
	0.211
	43
	CdSe
	0.0241

	20
	BaCl2(l)
	0.195
	44
	KCl(g)
	0.0239

	21
	SmCl3(l)
	0.192
	45
	CdI(g)
	0.0230

	22
	PrCl3(l)
	0.176
	46
	Li2Cl2
	0.0204

	23
	AmN
	0.157
	47
	PmCl3
	0.0150

	24
	LaCl3(l)
	0.150
	48
	AmCl3
	0.0144

	Total
	99.89%



For clarity, only some of the compounds are shown. The sum of the amount of the substance of the compounds not included in the table does not exceed 0.11 mol.%.
The main compounds, as expected, were the chlorides of uranium and plutonium, as well as the chlorides of rare earth elements and other actinides and lanthanides.
Chlorinating agent: PbCl2
The Pb2+/Pb potential is much more positive than the Cd2+/Cd potential. Hence PbCl2 is a stronger chlorinating agent than CdCl2. The chlorination process will also proceed according to reactions 1-11, where instead of CdCl2 there will be PbCl2, and metallic lead will be formed, not cadmium. As follows from FIG. 3 process in this case can be carried out at lower temperatures, because chlorination of UNCl occurs at a lower temperature.
[image: ]
FIG. 3. Dependence of Gibbs energy on temperature for chlorination reactions of UN with lead chloride.

	FIG. 3 shows that already starting from a temperature of 323 °C, the chlorination reaction of the formed UNCl to UCl3 becomes possible. Therefore, presumably, the process can be carried out at temperatures only slightly higher than the melting point of lead chloride (501 °C).  
	For thermodynamic modeling of the chlorination process using PbCl2, we use the same initial data as for the chlorination of CdCl2. Since theoretically the process can be carried out at relatively low temperatures, we will choose 650 °C as the working temperature. The result of calculating the equilibrium composition of the mixture formed during the chlorination of nitride SNF with lead chloride in the LiCl-KCl melt is presented in TABLE 4.

TABLE 4. COMPONENTS FORMED AFTER SOFT CHLORINATION OF NITRIDE SNF USING PbCl2 IN LiCl-KCl EUTECTIC AT 750 °C BASED ON THE RESULTS OF THERMODYNAMIC MODELING

	№
	Compound/
element
	Amount of substance, mol. %
	№
	Compound/
element
	Amount of substance, mol. %

	1
	UCl3(l)
	67.5
	25
	YCl3(l)
	0.141

	2
	PuCl3(l)
	13.0
	26
	MoC
	0.139

	3
	UCl4(l)
	5.25
	27
	RbCl(l)
	0.123

	4
	Xe(g)
	1.70
	28
	PrCl3(l)
	0.117

	5
	Ru
	1.45
	29
	LaCl3(l)
	0.0957

	6
	CsCl(l)
	1.39
	30
	CdCl2(l)
	0.0818

	7
	Mo
	1.38
	31
	Sn
	0.0682

	8
	NdCl3(l)
	1.22
	32
	SmCl2
	0.0625

	9
	ZrN
	1.21
	33
	PmCl3
	0.0425

	10
	Rh
	0.447
	34
	EuCl2(l)
	0.0389

	11
	BaCl2
	0.399
	35
	GdCl3(l)
	0.0361

	12
	Tc
	0.397
	36
	Ag3I3(g)
	0.0351

	13
	CeCl3(l)
	0.757
	37
	Mo2C
	0.0322

	14
	UPd3
	0.374
	38
	NpCl3
	0.0275

	15
	LaCl3
	0.323
	39
	PbSe
	0.0233

	16
	C
	0.298
	40
	Sb
	0.0202

	17
	SmCl3(l)
	0.277
	41
	CmCl3
	0.0141

	18
	PrCl3
	0.273
	42
	MoN0.5
	0.0118

	19
	SrCl2(l)
	0.259
	43
	He(g)
	0.0105

	20
	PbTe
	0.241
	44
	PbCl(g)
	0.00935

	21
	ZrCl4(g)
	0.188
	45
	PbI2(g)
	0.00800

	22
	AmCl3
	0.171
	46
	PbCl2(g)
	0.00780

	23
	BaCl2(l)
	0.149
	47
	Li3Cl3(g)
	0.00524

	24
	Kr(g)
	0.143
	48
	TeI2(g)
	0.00477

	Total
	99.95%



The sum of the amount of the substance of the compounds not included in the table does not exceed 0.05 mol.%. In both cases, during chlorination, the main products are UCl3, UCl4, and PuCl3. Inert gases Xe, Kr are released from the fuel. 
Noble metals form intermetallic compounds for example UPd3, but they are also present in the form of Ru, Rh metals. Silver forms silver iodide.
Lanthanides are chlorinated and are present in the form of chlorides LaCl3, CeCl3, NdCl3, etc. Actinides are also chlorinated (AmCl3, CmCl3).
During chlorination, zirconium remains in the form of its nitride ZrN and a small amount of ZrCl4. Molybdenum remains partly in the form of its nitride MoN0.5, but most of it is in free form.   
Conclusions
The material composition of the nitride SNF was calculated by the methods of thermodynamic modeling. The equilibrium composition of mixtures, which are formed during the chlorination of SNF using CdCl2 or PbCl2 in molten LiCl-KCl eutectic, has been calculated. It is shown that in both cases chlorination proceeds in two main stages through several parallel reactions. The results obtained can be used to select the technological parameters of chlorination operations.
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