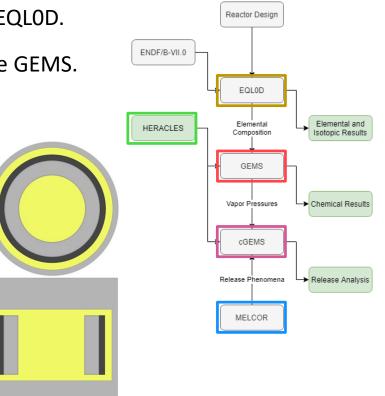


Jonathan Dietz :: Advanced Nuclear System Group :: Paul Scherrer Institut presented by: Jiri Krepel & Sergii Nichenko

MSR fuel cycle and thermo-dynamics simulations

International Conference on Fast Reactors and Related Fuel Cycles: Sustainable Clean Energy for the Future (FR22) 19–22 April 2022, Vienna, Austria



- Molten Salt Reactors with liquid fuel have potential to combine excellent fuel cycle capabilities with novel safety performance.
- However, many proposed concepts are based solely on neutronic simulations and salt melting temperature consideration.
- In this study, we tried to go little bit beyond this simple approach.
- MSR neutronic simulations were combined with thermo-dynamics calculations and with simplified severe accident simulation.
- Focusing on class of homogenous MSR, where both U-Pu and Th-U closed cycles were considered in both fluorides and chlorides salts.

Interconnection of applied tools

- Neutronic simulation: PSI in house procedure EQLOD.
- Thermo-dynamic calculation: PSI in house code GEMS.
- With updated Heracles database.
- Severe accident simulation: cGEMS code It is a loose coupling of GEMS and MELCOR code.
- Neutronic input data: MSFR-like geometry, replacement of blanket by Hastelloy reflector, 3GWth power, and EVOL benchmark reprocessing specification.

MSFR-like geometry

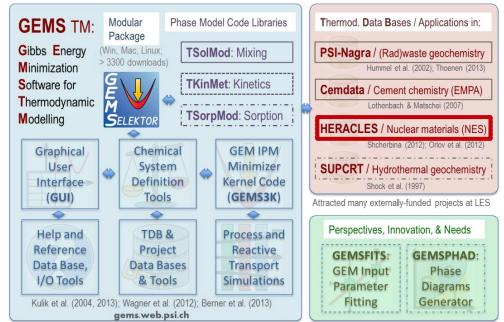
Neutronic simulation

- Acknowledgement: it is continuation of B. Hombourger PhD thesis published in 2018.
- Minimal critical size of an iso-breeding reactor was estimated.

•	As	well	as	major	
	components				
	of t	the fu	Jel	salt:	

	14m ³	18m ³	19.1m ³	65.8m ³	
al size eding	Fluoride Salt Thorium Cycle	Fluoride Salt Uranium Cycle	Chloride Salt Uranium Cycle	Chloride Salt Thorium Cycle	
	77.5LiF-22.5UF ₄	77.5LiF-22.5UF ₄	68NaCl-32UCl ₃	50NaCl-50ThCl ₄	
	Fluorides/Thorium	Fluorides/Uranium	Chlorides/Thorium	Chlorides/Uranium	
ajor –	F: 5.15E-02	F: 4.87E-02	Cl: 2.21E-02	Cl: 2.15E-02	
	Li: 2.43E-02	Li: 2.01E-02	Na: 4.62E-03	Na: 8.88E-03	
L.	Th: 5.51E-03	U: 5.60E-03	Th: 3.77E-03	U: 3.46E-03	
lt:	U: 1.05E-03	Pu: 1.59E-03	U: 4.60E-04	Pu: 6.74E-04	
	Pu: 2.64E-04	Am: 5.79E-05	Pu: 2.33E-04	Am: 1.74E-05	
	Zr: 3.90E-05	Cm: 2.88E-05	Am: 3.94E-05	Zr: 1.57E-05	
	Am: 3.14E-05	Zr: 1.76E-05	Np: 1.08E-05	Nd: 1.24E-05	
	Cm: 2.53E-05	Nd: 1.43E-05	Zr: 7.28E-06	Cm: 1.05E-05	
	Nd: 2.07E-05	Ce: 1.12E-05	Cm: 6.63E-06	Ce: 9.66E-06	
	Ce: 1.88E-05	Np: 6.65E-06	Nd: 4.29E-06	Pr: 3.99E-06	
	Pa: 1.30E-05	Pr: 4.56E-06	Ce: 3.86E-06	Np: 3.57E-06	

DIETZ, J., Chemical-Thermodynamic Modelling of the MSR-Related Systems Under Normal and Accident Conditions, MSc thesis, ETH Zurich, Switzerland, 2020


Π ♠

4m

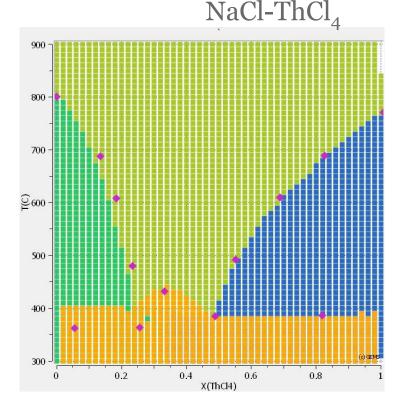
GEMS code with Heracles database

- PSI has a competence in thermodynamics simulations. In-house code GEMS (Gibbs Energy Minimization Software) is unique open source alternative to the commercial FactSage code.
- The respective HERACLES database and selected models were extended or modification.
- Proper phase diagram plotter is still missing.

Kulik D.A., Dmytrieva S.V., Wagner T., Kosakowski G., Thoenen T, Berner U., et al. (2004-2014): Gibbs Energy Minimization Software (GEMS)

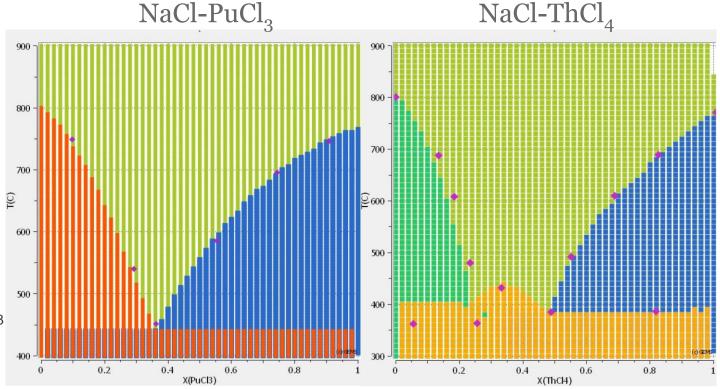
Recent Heracles updates

Species	Changes Made
ThCl ₄	Imported as is from literature
Np	Imported as is from literature
PuCl ₃	Adjusted previously existing data entry to conform with literature melting point
UCl ₃	Missing liquid phase data manually matched based on literature values
NpF ₃	Missing liquid phase constructed from melting-/boiling points and similarity to ${\rm UF}_{\rm 3}$
AmF ₃	Solid adjusted and liquid designed from assumed similarity to ${\rm UF}_3$
ZrF ₄	Imported as is from literature
NdCl ₃	Imported as is from literature
PrCl ₃	Imported as is from literature
PrF ₃	Imported as is from literature
Na ₂ ThCl ₆	Created in GEMS function ReacDC
Pr	Imported as is from literature

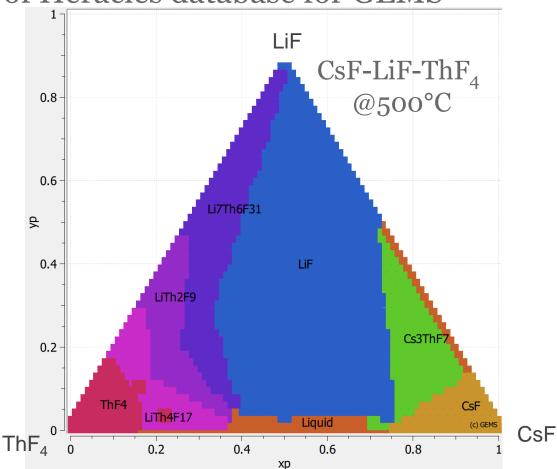

Additional Changes were made to: NpF₄, NdF₃, SrF₂, LaF₃, CeF₃, BaF₂, CsF

DIETZ, J., Chemical-Thermodynamic Modelling of the MSR-Related Systems Under Normal and Accident Conditions, MSc thesis, ETH Zurich, Switzerland, 2020

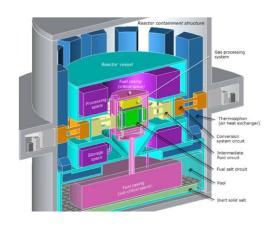
Extension of Heracles database for GEMS

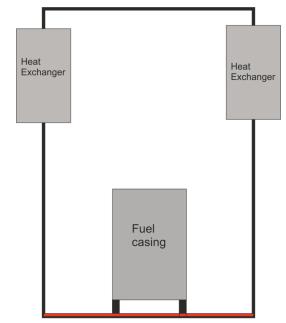

- 1. Simulation based on parameters from literature (ideal mixing).
- 2. Tuning the first Redlich-Kister parameter.
- 3. Tuning the second Redlich-Kister parameter & formation enthalpies of intermediate compounds.
- 4. Optimization of excess Gibbs' energy curve.
- 5. Fine tuning.

Extension of Heracles database for GEMS


- The aim was to cover two major reference salts:
- LiF-ThF₄-UF₄-PuF₃ for Fluorides and
- NaCl-ThCl₄-UCl₃-PuCl₃ for chlorides

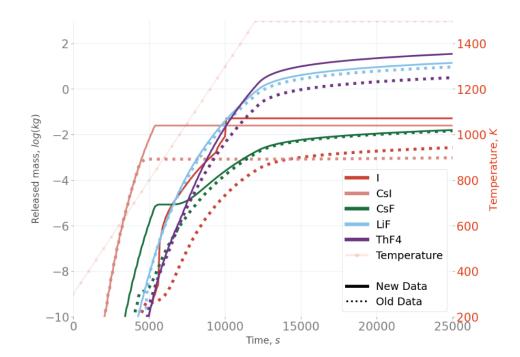
Extension of Heracles database for GEMS


- The GEMS code phase-diagram plotting capability is still under development.
- Included is an example for the CsF-LiF-ThF₄ system at 500°C



Simulation of severe accident in MSFR

- Simplified assumption: salt complete spill to bottom of cylindrical containment and its heat up to 1500K in several hours.
- First results on the SAMOSAFER task 3.4 published in Journal of Nuclear Materials
 - J. Kalilainen, S. Nichenko, J. Krepel:
 "Evaporation of materials from the molten salt reactor fuel under elevated temperatures".



Result with updated Heracles database

 Cumulative release of various substances as a function of time was recalculated with the updated Heracles database.

- The major aim of this MSc thesis was a simulation of MSFR and MCFR like reactors operated in closed Th-U and U-Pu cycle.
- The minimal iso-breeder core size was estimated.
- The major compounds of equilibrium fuel composition were identified.
- The Heracles database of GEMS code was accordingly updated.
- GEMS code was used for several phase diagram simulations.
- cGEMS code was applied to simplified severe accident scenario with these updated data.

Wir schaffen Wissen – heute für morgen

Thank you. Questions?

