Category:
Molten Salt Reactors

Adopted from: IAEA TRS-489, Status of Molten Salt Reactor Technology, International Atomic Energy Agency, 2021.	Neutron spectrum / Salt type	Thermal	Fast					
Fluorides	\checkmark	Fuel (cycle)	Enr.U	MA	Closed Th-U	Closed U-Pu	B\&B U-Pu	
Fluorides	\checkmark	\checkmark	\checkmark					

77.5LiF-22.5ThF

$14 \mathrm{~m}^{3}$

77.5LiF-22.5UF 4

$68 \mathrm{NaCl}-32 \mathrm{UCl}_{3}$

Reflector type: $\quad \mathrm{PbO}$ $\square{ }^{208 P b}$ Lead $^{\square}$ Zirconium \square SS316

Fuel tap MCFR

Conclusion: MCFRs are promising alternative to MSFRs, due to minimal scattering XS, they provide very hard neutron spectrum (fuel cycle performance), but they are also transparent for
neutrons (bulky cores).

Simulated reprocessing cases

Fuel salt removal from the core (fuel tap)				Fuel salt continuous treatment in the core (FPs removal)				
Case nr.	Cycle time (Y)	Removal constant $\lambda(1 / \mathrm{s})$	Share removed $(\% / \mathrm{Y})$	$\begin{aligned} & \text { Case } \\ & \text { nr. } \end{aligned}$	Gaseous FPs proton nr.	Gas. FPs rem. const. $\lambda(1 / \mathrm{s})$	$\begin{aligned} & \text { Metallic } \\ & \text { FPs } \\ & \text { proton } \mathrm{nr} . \end{aligned}$	Met. FPs rem. const. $\lambda(1 / \mathrm{s})$
1	14.26	$0.45 \mathrm{E}+09$	7.01	All	12781018365486	$1 / 30$	$\begin{aligned} & 30,31, \\ & 32,33, \\ & 34,40, \\ & 41,42, \\ & 43,44, \\ & 45,46, \\ & 47,48, \\ & 49,50, \\ & 51,52 \end{aligned}$	1/3600
2	28.51	0.90E+09	3.51					
3	42.77	$1.35 \mathrm{E}+09$	2.34					
4	57.03	1.80E+09	1.75					
5	71.28	$2.25 \mathrm{E}+09$	1.40					
6	85.54	$\frac{2.70 E+09}{315 \mathrm{E}+09}$	1.17 1					
8	99.80 114.06	$3.15 \mathrm{E}+09$ $3.60 \mathrm{E}+09$	1.00 0.88					
9	128.31	$4.05 \mathrm{E}+09$	0.78					
10	142.57	$4.50 \mathrm{E}+09$	0.70					
11	156.83	4.95E+09	0.64					
${ }_{12}^{13}$	171.08 185.34	5.40E+09	0.58 0.54					
14	199.60	$\frac{5}{6.29+5+09}$	0.50					

-Gaseous and metallic FPs removal and salt removal --Gaseous FPs removal and salt removal
-OOnly salt remova

