

EVALUATION OF AN INCREASE OF THE POWER DENSITY FOR THE FRENCH COMMERCIAL SODIUM FAST REACTOR AND OPTIMIZATION STUDY AT 1100 MWE WITH THE SDDS TOOL

<u>D GÉRARDIN</u>, S. POUMEROULY, L. ANDRIOLO EDF-R&D

International Conference on Fast Reactors and Related Fuel Cycles: Sustainable Energy for the Future 19-22 April 2022

I. CONTEXT

CONTEXT

- Objective: Enhanced competitiveness with reduced construction costs
 - Several options identified to reduce SFR costs that needs further R&D studies
 - Conception and optimisations studies performed at EDF-R&D with SDDS tool
- 1) Study performed in 2018 for a 1000 MWe SFR
 - 2 designs (12 SA rings or 13 SA rings) pre-selected as they offered good compromise between safety performances and reduced core diameter
- 2) Study performed in 2020 considering a 10% increase of nominal power
 - □ 1000 MWe (2400 MWth) →1100 MWe (2640 MWth)
 - Questions to be answered:
 - Are the trends of the study at 1000 MWe still the same at 1100 MWe?
 - Is it possible to find a design at 1100 MWe that meet the safety criteria and the limited core diameter objective ?
 - Complementary studies to test some evolutions of the variable parameters or selection criteria

II. METHOD

SDDS

- Tool to help the conception and the optimisation of SFR cores
- Developed at EDF since 2009

SPECIFICATION OF THE STUDY

Parameter	Range	
Number of fuel sub-assembly rings	12 or 13	
Number of pins per sub-assembly	217 or 271	
Pellet/cladding (radial) gap (mm)	[0;0.11]	
Inner clad radius (cm)	[0.35 ; 0.5]	
Outer core height (cm)	[90 ; 110]	
Outer/inner core height gap (cm)	[0 ; 20]	
Fertile plate position (% of inner core height)	[0 ; 50]	
Fertile plate thickness (cm)	[0 ; 20]	

Low sodium void effect core geometries

- Heterogenous core with fertile plate, height gap between inner and outer core and plenum
- Variation range allows to go up to homogeneous core geometry
- Additional constraints/filters before creating the surrogate models
 - French commercial SFR specifications: power density in [250; 375] W/cm³
 - Core viability: Margin to fuel melting in nominal conditions > 0

III. RESULTS OF THE SDDS METHOD AT 1100 MWE

RESULTS OF THE SDDS STUDY AT 1100 MWE

- Results presented in (Margin to fuel melting during UCRW, sodium temperature in ULOSSP)
 - Degradation of the safety performances compared to previous study at 1000 MWe
 - □ 12 assembly rings
 - TULOSSP in [901 ; 1170] °C & Margin to fuel melting in UCRW [-189 ; 98] W/cm
 - No design avoiding boiling in ULOSSP in the studied space
 - □ 13 assembly rings
 - TULOSSP in [878; 1122] °C & Margin to fuel melting in UCRW [-189; 98] W/cm
 - Designs avoiding fuel melting in UCRW and designs avoiding boiling in ULOSSP but not both simultaneously
- Best designs on the safety point of view located on the Pareto front
- Colour of each point indexed on the mean value of the studied parameter
- Number of pins
 - Designs on Pareto front with a high number of pins per assembly (271 rather than 217)

50

RESULTS OF THE SDDS STUDY AT 1100 MWE

- Outer core height
 - □ Gradient colinear to Pareto front → either small outer core to enhance ULOSSP or a large outer core to enhance UCRW
- For other parameters, designs on the Pareto front with
 - **Thin pins** ~8 mm diameter \rightarrow due to the filtering of the low power density cores
 - Relatively small inner/outer core height gap
 - Large fertile plate (15-20 cm) either located at the bottom of the core to enhance ULOSSP or at the middle of the core to enhance UCRW
- Similar trends than the ones observed in the study at 1000 MWe

IV. SELECTION OF A 1100 MWE CORE

SELECTION OF A 1100 MWE CORE CRITERIA AND OPTIMISATION OBJECTIVES

- Criteria (safety related criteria)
 - Margin to fuel melting in nominal conditions > 300 °C (Standard conception criteria)
 - Margin to fuel melting in case of UCRW > 20 W/cm (to take into account the surrogate models' uncertainties)

- Optimisation objectives
 - Safety objectives: Sodium temperature in ULOSSP at core outlet as low as possible
 - Economical objective: Core diameter as small as possible
- 12 SA rings configurations : no core configuration selected at 1100MWe because of poor safety performances (in the studied space)

SELECTION OF A 1100 MWE CORE

• 13 SA rings configurations

Core selected in 2018 re-evaluated at 1100 MWe does not meet the non-melting criteria in UCRW

Core selected in Core on the Pareto

- Core selected with the new optimisation at 1100 MWe
 - Meet the safety criteria regarding non fuel melting
 - Same core radius as the core selected in 2018

	2018 re-evaluated at 1100 MWe	front of the SDDS study at 1100 MWe
Parameter	13-Ref	13-C5
Outer pellet radius [cm]	0.346	0.3455
Inner clad radius [cm]	0.35	0.35
Outer core height [cm]	94	92
Outer/inner core height gap [cm]	5	0
Inner fertile zone position (% of inner core height)	5	18
Inner fertile zone height [cm]	20	15
Number of pins per SA	271	271
Fissile core radius [cm]	203	203
Power density [W/cm3]	304	302
Margin to fuel melting in nominal conditions [°C]	356	431
Margin to fuel melting in UCWR [W/cm]	-3	29
Asymptotic temperature in ULOSSP [°C]	915	922

Does not avoid sodium boiling in ULOSSP

- SDDS models : Simplified thermohydraulic, natural convection but no passive protection system
- Need more precise modelling and additional protection system

V. COMPLEMENTARY STUDIES AT 1100MWE

COMPLEMENTARY STUDIES

- Test of some evolutions of the variable parameters or selection criteria
- Increase of the number of pin per assembly
 - Variation range shifted from {217; 271} to {271; 331} to access core configurations with better behaviour in ULOSSP and in UCRW
 - Significative **improvement of the safety performances** (particularly in ULOSSP) but :
 - Designs with 13 SA rings and 331 pins : too large core radius (too low power density) do not meet the French commercial SFR specifications
 - Designs with 12 SA rings and 331 pins : lower safety performances than the 13 SA rings and 271 pin designs and equivalent core radius
- Addition of technical and economical criteria
 - □ Campaign length > 1500 JEPN
 - Maximal damage on the cladding < 150 dpa
- Increased number of designs are eliminated (some of them being on the Pareto front and with a low sodium temperature in ULOSS)

VI. CONCLUSIONS & PERSPECTIVES

CONCLUSIONS & PERSPECTIVES

Several constraints

- □ Safety performances : some of the geometrical characteristics that enhance ULOSSP tend to degrade UCWR (and vice versa)
- □ Economical objectives (reduction of the core radius and high power density) opposed to safety objectives

10% increase of the power

- □ Similar trends at 1000 MWe and 1100 MWe (core on Pareto front with similar characteristics)
- Degradation of the safety performances for ULOSSP and for UCRW
- One 13 assembly rings design with 271 pins per assembly pre-selected

Further studies of the selected design

- Selected design does not avoid sodium boiling in ULOSSP with the models of SDDS
- Implementation of passive safety rods and more precise modelling => CATHARE study
- □ Evaluate the severe accident behaviour and the need for mitigation devices implementation => SIMMER study
- No fixed design
 - More precises studies of the pre-selected design foreseen => feedback on the design => iterative procedure
 - · Possible future evolution of the criteria and optimisation objectives of the French commercial SFR

THANK YOU!

