

- GFR demonstrator ALLEGRO
- HeFASTo concept
- Ongoing national and International R&D on GFR in Europe

ALLEGRO – DESIGN OVERVIEW

- Two consecutive core configurations
 - Driver core MOX/UO₂ pin-type fuel in steel cladding, experimental positions for fuel qualification
 - Refractory core (U,Pu)C pin-type fuel in SiC-SiCf cladding <- GFR reference fuel
- Target core outlet temperature 850°C
- Power density up to 100 MW/m³
- Focus on fully passive safety to meet GENIV objectives

ALLEGRO main characteristics	
Nominal Power (thermal)	75 MW
Driver core fuel/cladding	MOX(UO2) / 15-15ti Steel
Experimental fuel/cladding	UPuC / Sic-Sicf
Fuel enrichment	35% (MOX) / 19.5% (UO2)
Power density	100 MWth/m3
Primary coolant	Не
Primary pressure	7 MPa
Driver core in/out temperature	260°C / 530°C
Experimental fuel in/out T	400°C / 850°C

THE ALLEGRO PROJECT TEAM

International collaboration \bullet

- V4G4 CoE 6 organizations from 5 countries (CZ,HU, SK,PL + FR)
- Increasing numbers of officially collaborating organizations
- V4G4 Centre of Excellence \bullet
- Full members (alphabetically): ullet

Centre for Energy Research, Hungary

National Centre for Nuclear Research, Poland

ÚJV Řež, a.s., Czech Republic

VUIC VUJE, a s., Slovakia

Associated members (alphabetically) \bullet

Alternative Energies and Atomic Energy Commission, France

CVŘ Research Centre Řež, Czech Republic

ALLEGRO – MAIN GOALS

•ALLEGRO should achieve:

- Demonstration of viability of the GFR technology
- Proof of concept ability to deliver high-potential heat while remaining safe and reliable
- Testbed— qualification of materials and technologies in prototypical conditions

Ultimate goal – Qualification of the GFR technology for commercial application

ALLEGRO

Commercial GFR

HeFASTo - GOALS AND BASIS OF DESIGN

The main goal of the HeFASTo is to bring a modern, feasible and attractive concept of commercially applicable GFR

- Modular construction
- Relatively small size of a unit
- Based on solutions developed for ALLEGRO as the GFR demonstrator

Focus on maximum possible levels of versatility and utilization of the inherent properties:

- Fast reactor -> breeding allows for excellent fuel economics, potential to use reprocessed (recycled) fuel
- High-temperature -> Utilization of the heat in industrial processes as well as electricity production

Comply with the most stringent requirements of GENIV Reactors

- Fully passive safety
- Proliferation issues are treated by development of a unique configuration of the active core, limiting fuel handling

HeFASTo – MAIN PARAMETERS

•Main Features of HeFASTo

- Core outlet temperature 900°C
- Placed partially underground only 18m above ground
- 5 years of operation without the need for fuel handling
- Ability to used reprocessed fuel

Parameter

Thermal power Core inlet/outlet to Primary coolant Primary pressure Secondary coolar Secondary press Fuel

Fuel enrichment

Operation time v Load factor

	Value	Unit
	200	MWth
temperature	450 / 900	°C
	Не	-
е	7,5	MPa
ant	N2+He	-
sure	8,0	MPa
	UC or(U,Pu)C	-
I	UC - 19,5 (U,PU)C - 30	%
without outage	5	years
	>95	%

HeFASTo – MODULARITY

Focus on simplification of construction, repairs and transport

- Minimalization of welds done on the construction site
- Diameters of all main components suitable for transport via railway or road
- Emphasis on easy repairs of main components replacable modules

Secondary circuit

- Options for combination of three different power conversion modules:
- Hydrogen production module high-temperature electrolysis
- Electricity production module combined cycle (44 % efficiency)
- Direct heat supply for chemical industry (850°C at the customer side)

CURRENT GFR R&D PRIORITIES

• GFR R&D priorities summarized in a document ALLEGRO R&D Roadmap

- Living document prepared by V4G4 CoE
- Selected priorities listed below

Topical area	Key particular issues	Cross-cutting R&D synergies with
	Fuel composition selection	
The core	Fuel thermal-mechanics behavior	Other fast reactor technologies (sodium in particular)
	Core Safety	
	Valves	
Systems and components	Sealing	VHTRs
	Heat exchangers	
	Reactivity control systems	Other fast reactor technologies
Materials	Core materials – cladding, reflector, shielding	Other fast reactor technologies
	Structural materials of primary circuit	VHTRs
	Structural materials for the containment	VHTRs
Safety and reliability	Philisophy of passive safety	GENIII+ reactors
	Severe accident prevention and management	SFR
Thermal-hydraulics	Natural convection	Operating/operated gas-cooled reactors
Helium-related technologies	Coolant purification	(V)HTRs

SAFE-G PROJECT (H2020)

- Recieved funding from the Euratom H2020 programme NFRP-2019-2020-6
- Full name:
 - Safety of GFRs through innovative materials, technologies and processes
- Consortium:
 - 15 organizations from 7 European countries + Japan

VUJE(SK), STUBA(SK), UJV Rez(CZ), CVR(CZ), CTU(CZ), EK(HU), BME(HU), CEA(FR), NCBJ(PL), Cambridge U.(UK), AMRC(UK), WOOD(UK), BriVaTech(GER), Kyoto U.(JAP), Evalion(CZ)

- Total budget: 4.5M€
- Duration: October 2020 September 2024
- Work packages:
 - Core design and safety
 - Innovative materials and technologies
 - Decay heat removal
 - Results integration, standardization and codes
 - Education and training

GFR/ALLEGRO R&D PROJECTS IN CZECHIA

• Ongoing national R&D projects that include GFR/ALLEGRO:

- 9 ongoing projects in Czechia, one European project
- 5 successfully finished

Name	Duration	Main goal	Total budget (M€)
NOVA	2018-2022	Development of sacrificial materials for core catchers of GFRs	0.7
REDEAL	2018-2024	Testing of construction materials in gaseous environments at extreme conditions (high temperature, corrosive environments)	1.3
MKM	2018-2024	Development of a new class of Zr based alloys and high entropy alloys with optimized properties for Nuclear industry	1.7
ALLEGRO	2018-2025	Design and testing of key systems and components for ALLEGRO	1.9
SODOMAHe	2019-2025	Stability and resistance of materials for high-temperature helium-cooled reactors	2.8
MATPRO	2020-2024	Development of "better concrete" for extreme conditions	0.7
KOBRA	2020-2023	Development of a passive safety systems for GFRs/VHTRs based on prolongation of primary compressor rundown by utilization of decay heat	1.3
PMATF	2020-2023	Methods for the characterization, testing, and qualification of irradiated samples of ATF materials	1.6
VELEMLOK	2022-2025	Development and testing of very-high temperature materials and prototyping of components	1.2
			Total: 13.2

	Þ
	U.
Ľ	P
	- 0

COOPERATION ON THE PROJECTS

• Czech Republic has solid capabilities in developing cutting-edge nuclear technologies

- Close cooperation of R&D companies, academia and the nuclear supply chain
- Capability to develop a reactor project from the pre-conceptual phase to manufacturing of the components

No.	Abbreviation	Name	Type of organization
1	ATEKO	-	Manufacturer/Supplier
2	CTU	Czech Technical University in Prague	University
3	CU	Charles University	University
4	CVR	Research Center Rez	R&D Organization
5	SKP	Doosan Skoda Power	Manufacturer/Supplier
6	IIC CAS	Institute of Inorganic Chemistry, CZ Academy of Sciences	Academia
7	IT CAS	Institute of Thermomechanics, CZ Academy of Sciences	Academia
8	MICO	Moravian Industrial Company	Supplier
9	Skoda JS	Skoda Nuclear Engineering	Supplier/research organization
10	SVUM	- (former National Institute of Material Research)	Private R&D Organization
11	TUL	Technical University Liberec	University
12	UCT	University of Chemical Technology in Prague	University
13	UJV	- (Former Nuclear Research Institute)	Private R&D Organization
14	UJP	- (former National Institute of Nuclear Fuels)	Private R&D Organization
15	UWB	University of West Bohemia in Pilsen	University

GFR R&D PROJECTS -> R&D PROGRAM

- New projects are formulated based on a wider picture of both the finished and ongoing activities
- Utilization of synergies, newly acquired know-how, new knowledge

Several R&D topics developed into more complex R&D programs

- Development of components and systems
 - Projects ALLEGRO, NOVA and MATPRO development of systems and components accompanied by targeted material development
- Development, construction and operation of electrically heated GFR Mockup
 - S-ALLEGRO facility in Pilsen, Czech Republic. Developed by CVR, ATEKO and UJV Rez, in operation since 2020
 - STU helium loop in Trnava, in operation since 2019
- Material research and development
- Projects SODOMAHe, REDEAL and MKM in synergy, Obtained knowledge being utilized in design of components for the GFR
- Helium technologies
- Consecutive projects TEQUILA, CIPERA, and REGNET dealing with coolant purification and helium sealing, each with increasing level of detailed and enlarged scope, utilizing the HTHL facility in Rez

S-ALLEGRO MOCKUP AND STU HELIUM LOOP

- S-ALLEGRO
- Located in Pilsen, Czech Republic
- Integral facility, electrically heated mock-up of ALLEGRO in 1/75 scale
- Helium at 7 MPa, max. outlet T 850°C, max. power 1 MW
- Available for both thermal-hydraulics experiments and out-of-pile testing of scaled-down components

STU helium loop

- Located in Trnava, Slovakia
- He loop for studying natural circulation cooling
- Helium at 7 MPa, max. outlet T 520°C, max power 220 kW

HELIUM TECHNOLOGIES R&D

Test-facilities for separation of impurities/gases from gaseous media

Performance of Helium purification unit in the HTHL1 loop (CV Rez)

- Purification unit (H2, CO, CO2, CH4): Mech. filters, Room-T mol. sieves, CuO bed 250 °C, Adsorber -70 °C
- Doping unit & Analytical unit (Gas chromatograph & optical hygrometer)
- Out-off pile training facility

View of the HTHL1 loop purification unit

Thank you for your attention!

petr.vacha@ujv.cz

www.allegroreactor.eu

www.hefasto.eu

ÚJV Řež, a. s. Hlavní 130, Řež 250 68 Husinec, Czech Republic

e-mail: sales@ujv.cz www.ujv.cz

