

FR22: IAEA Conference on Fast Reactors and Related Fuel Cycles 19 – 22 April 2022 Vienna, IAEA

IAEA coordinated research projects on Neutronics Benchmark of CEFR Start-Up Tests and FFTF Loss of Flow Without Scram Test

Nikoleta Morelová, Vladimir Kriventsev, Joseph Mahanes, Krzysztof Otlik

Fast Reactor Technology Development Team Nuclear Power technology Development Section Division of Nuclear Power Department of Nuclear Energy International Atomic Energy Agency https://www.iaea.org/topics/fast-reactors

email: FR22@IAEA.ORG

IAEA Coordinated Research Projects on FRs

CRP: Neutronics Benchmark of CEFR Start-Up Tests

CEFR (China Experimental Fast Reactor)

- Located in China Institute of Atomic Energy
- 65MWt (20MWe) sodium cooled fast reactor with a high neutron leakage core fuelled with uranium oxide and stainless-steel radial reflector.
- The primary system is a pool-type design, liquid sodium working fluid for the primary and secondary circuits.
- In 2010, CEFR went into first criticality.
- A series of start-up experiments were carried out to measure reactor physics and kinetics parameters.
- 6 experiments were selected for benchmark
 analysis
 - evaluations of the criticality, control rod worth, sodium void worth, temperature effect reactivity, and various reaction rates.
- This CRP provides an excellent opportunity to the member states for validation of the physical models and neutronics simulation codes by comparing the calculated results to the recorded experimental data from the CEFR start-up tests.

CEFR Reactor Block

China Experimental Fast Reactor Plant

Neutron source(1)
Fuel(79)
Safety rods(3)
Regulatory rods(2)
Shim rods(3)
Stainless steel(2)
Stainless steel(37)
Stainless steel(132)
Stainless steel(223)
B4C shielding(230)

CRP: Neutronics Benchmark of CEFR Start-Up Tests

WP1. Net criticality

Country	Organization	
Belgium	SCK•CEN	
China	CIAE	
China	INEST (FDS)	
China	SNERDI	
China	XJTU	
Finland	VTT	
France	CEA	
Germany	HZDR	
Germany	GRS	
Germany	KIT	
Hungary	BME	
Hungary	CER	
India	IGCAR	
Italy	NINE	
Italy	UNIPI	
Japan	JAEA	
Korea, Rep. of	KAERI	
Korea, Rep. of	UNIST	
Mexico	ININ	
Romania	RATEN-ICN	
Russia	IBRAE	
Russia	IPPE	
Russia	SSL	
Russia	Kurchatov Ins. (NRCKI)	
Slovakia	VUJE	
Switzerland	PSI	
Ukraine	KIPT	
UK	Un. of Cambridge	
United States	ANL	
United States	NRC	

FR22 Nikoleta Morelová, IAEA, 19 April 2022

30 Participating Organizations from 18 Countries

CRP: Neutronics Benchmark of CEFR Start-Up Tests

CRP: Benchmark Analysis of FFTF Loss of Flow Without Scram Test

FFTF (Fast Flux Test Facility) Reactor:

- 400 MW_{th} sodium cooled fast test reactor
- Mixed UO₂-PuO₂ (MOX) fuel
- Loop type plant, axial and radial reflectors
- Built to assist development and testing of advanced fuels and materials for fast breeder reactors
- Series of Passive Safety Tests performed in 1986
 - Unprotected transients including 13 Loss of Flow without scram tests
 - Demonstrated passive safety of SFRs
 - This Benchmark analysis is based on the Test number 13, which was initiated at 50 % power and 100 % flow.
- These passive safety tests demonstrated the potential of FFTF to survive severe accident initiators with no core damage.
- The dynamics analysis of FFTF reactor core with complex reactivity feedback mechanisms and primary and secondary coolant loops using system codes provides an excellent opportunity for validation of the physical and mathematical models and reactor simulation codes using actual experimental data.

Country	Organization		
China	CIAE		
China	INEST		
China	NCEPU		
China	XJTU		
France	CEA		
Germany	HZDR		
Germany	KIT		
India	IGCAR		
Italy	NINE		
Italy	Sapienza Uni of Rome		
Japan	JAEA		
Korea, Rep. of	KAERI		
Netherlands	NRG		
Russia	IBRAE		
Russia	IPPE		
Spain	CIEMAT		
Sweden	KTH		
Switzerland	EPFL		
Switzerland	PSI		
United States	ANL		
United States	NRC		
United States	PNNL		
United States	TAMU		
United States	TerraPower		

24 Participating Organizations from 13 Countries

CRP: Benchmark Analysis of FFTF Loss of Flow Without Scram Test

IAEA Special Session on CRPs

Time	Paper No.	Name	Designating Member State/Organization	Title of Paper
13:12–13:24	104	X. Huo	China	CEFR physical start-up tests: the core specifications and experiments
13:24–13:36	163	A. Gomez Torres	Mexico	Verification and validation of neutronic codes using the start-up fuel load and criticality tests performed in the China Experimental Fast Reactor
13:36–13:48	281	J. Choe	Korea	Neutronics Benchmark of CEFR Start-Up Tests: Temperature Coefficient, Sodium Void Worth, and Swap Reactivity
13:48–14:00	233	T. K. Kim	USA	Neutronics Benchmark of CEFR Start-Up Tests: Reaction Rates and Reactivity Coefficients
14:00–14:12	534	A. Moisseytsev	USA	Blind phase results for transient simulations of the FFTF Loss of Flow Without Scram test #13
14:12-14:24	536	N. Stauff	USA	Blind-Phase Results of the FFTF Neutronic Benchmark
14:24-15:00		All		Open Q&A

Thank You!

email: FR@IAEA.ORG

International Conference on

FAST REACTORS AND RELATED FUEL CYCLES: Sustainable Clean Energy for the Future

19-22 April 2022, Vienna, Austria

Organized by the

https://www.iaea.org/events/f

