

Verification and validation of neutronic codes using the start-up fuel load and criticality tests performed in the CEFR FR22: Sustainable Clean Energy for the Future

Armando Gomez, Roberto Lopez, Juan Galicia, et al.

Instituto Nacional de Investigaciones Nucleares armando.gomez@inin.gob.mx

19.04.2022

Output 00		Conclusions 0000

Contents

Fuel loading and criticality

Output: expected and optional

Participants with deterministic and stochastic codes

Blind results

Refined results

Conclusions

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 2/18

A. Gomez, R. Lopez, J. Galicia et al. V&V of neutronic codes with criticality tests performed in the CEFR $\,$

Fuel loading and criticality ●0	Output 00		Conclusions 0000

Experiment description: prior criticality steps

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 3/18

Fuel loading and criticality ○●	Output 00		Conclusions 0000

Experiment description: critical core

- ► Sodium temperature of 245°C
- 72 F-SA loaded,
- Steps 11 to 13 were supercritical with only one of the regulating rods (RE2) inserted respectively at 190 mm, 170 mm, 151 mm.
- Criticality state reached at RE2 inserted at position 70 mm.
- 3 dedicated start-up detectors located near the active core were used to get the counting rate for the criticality approaching process.

(ロ) (団) (目) (目) (目) (18)

Output ●○		Conclusions 0000

Expected output: net criticality

No. of Fuel	Rod position/mm		Core	Expected
SA's loaded	Other 7 CR's	RE2	state	output
70	Out-of-core	Out-of-core	Subcritical	k _{eff}
71	Out-of-core	Out-of-core	End of subcritical process	k _{eff}
72	Out-of-core	190	Supercritical	k _{eff}
72	Out-of-core	170	Supercritical	k _{eff}
72	Out-of-core	151	Supercritical	k _{eff}
72	Out-of-core	70	Critical (predicted)	k _{eff}

Output ⊙●		Conclusions 0000

Optional output

		2	
Rod position/mm		Core	Expected
Other 7 CR's	RE2	state	output
Out-of-core	Out-of-core	Subcritical	k _{eff}
Out-of-core	Out-of-core	Subcritical	k _{eff}
Out-of-core	Out-of-core	Subcritical	k _{eff}
Out-of-core	Out-of-core	Subcritical	k _{eff}
Out-of-core	Out-of-core	Subcritical	k _{eff}
Out-of-core	Out-of-core	Subcritical	k _{eff}
Out-of-core	Out-of-core	Subcritical	k _{eff}
Out-of-core	Out-of-core	Subcritical	k _{eff}
Out-of-core	Out-of-core	Subcritical	k _{eff}
	Rod positi Other 7 CR's Out-of-core Out-of-core Out-of-core Out-of-core Out-of-core Out-of-core Out-of-core Out-of-core Out-of-core	Rod position/mm Other 7 CR's RE2 Out-of-core Out-of-core Out-of-core Out-of-core	Rod position/mm Core Other 7 CR's RE2 state Out-of-core Out-of-core Subcritical Out-of-core Out-of-core Subcritical

Steps to criticality

Normalized power path

<ロ> < 回> < 回> < 三> < 三> < 三> 三 のへで 6/18

A. Gomez, R. Lopez, J. Galicia et al.

Fuel loading and criticality	Output	Participants	
		•	

Deterministic (17 participants)

Country	Institute	XS	Nodal Code	Lattice Code
China	CIAE: China Institute of Atomic Energy	ENDFB/VIII.0	NAS	PASC
China	XJTU: Xi'an Jiaotong University	ENDF/B-VII.0	SARAX- LAVENDER v1.5	SARAX-TULIP v1.5
France	CEA: Commissariat à <u>l'Énergie</u> Atomique	JEFF 3.1, JEFF 3.1.1	ERANOS, APOLLO3	ERANOS, APOLLO3
Germany	GRS: Gesellschaft für Anlagen- und Reaktorsicherheit	ENDF/B-VII.0	FENNECS	Serpent 2.1.31
Germany	KIT: Karlsruhe Institute of Technology	JEFF.3.1	VARIANT	ECCO
Hungary	CER: Centre for Energy Research	ENDFB/VIII.0	KIKO3DMG	Serpent 2.1.31
India	IGCAR: Indira Gandhi Centre for Atomic Research	ABBN-93, ERALIB- 1 JEF-2.2	FARCOB, ERANOS	FARCOB, ERANOS
Japan	JAEA: Japan Atomic Energy Agency	JENDL-4.0	DIF3D10.0/PARTI SN5.97	SLAROM-UF
Korea	KAERI: Korea Atomic Energy Research Institute	ENDF/B-V.II.0	DIF3D-VARIANT 11.0	MC2+3
Korea	UNIST: Ulsan National Institute of Science and Technology	ENDF/B+VII.1	RAST-K	MCS
Mexico	ININ: Instituto Nacional de Investigaciones Nucleares	ENDFB/VIII.0	AZNHEX (SPL)	Serpent 2.1.31
Russia	NRCKI: National Research Center: Kurchatov Institute	ABBN-93	JARFR	JARFR
Russia	SSL: Simulation Systems Ltd.	ENDFB/VII	DYNCO	WIMSD4
Switzerland	PSI: Paul Scherrer Institut	JEFF 3.1.1	PARCS v27	Serpent 2.1.30
UK	UoC: University of Cambridge	JEFF3.1.2	WIMS 11	WIMS 11
Ukraine	KIPT: Kharkov Institute of Physics & Technology	BNAB-76	FANTENS-2	
USA	ANL: Argonne National Laboratory	ENDF-B/VII.0	MCC-3, DIF3D	MCC-3

Stochastic (20 participants)

Country	Institute	XS	Code
Belgium	SCK-CEN: Belgian nuclear research centre	ENDF/B-VII.1	OpenMC 0.10.0
China	CIAE: China Institute of Atomic Energy	ENDFB/VIII.0	RMC
China	INEST: Institute of Nuclear Energy Safety Technology	HENDL3.0	SuperMC
Finland	VTT: Technical Research Centre of Finland	ENDF-B/VII.0, JEFF 3.1.2	Serpent 2.1.31
France	CEA: Commissariat à l'Énergie Atomique	JEFF3.1.1	TRIPOLI4
Germany	HZDR: Helmholtz Zentrum DresdenRossendorf	JEFF-3.1, JEFF-3.3, ENDF/B- VII.1, ENDF/B-VIII.0	Serpent 2.1.31
Germany	GRS: Gesellschaft für Anlagen- und Reaktorsicherheit	ENDF/B-VII.1	Serpent 2.1.30
Hungary	CER: Centre for Energy Research	ENDFB/VIII.0	Serpent 2.1.31
IAEA	IAEA: International Atomic Energy Agency	ENDF/B-VII.1	OpenMC, Serpent 2.1.27
India	IGCAR: Indira Gandhi Centre for Atomic Research	ENDF/B VIII.0, JEFF 3.3, JENDL 4.0, ROSFOND 2010, CENDL 3, TENDL 2017	OpenMC 0.10.0
Italy	NINE-UNIPI: Nuclear and Industrial Engineering- Università di Pisa	ENDFB/VIII.0	Serpent 2.1.31
Japan	JAEA: Japan Atomic Energy Agency	JENDL-4.0	MVP-II
Korea	KAERI: Korea Atomic Energy Research Institute	ENDF/B-VII.1	McCARD
Korea	UNIST: Ulsan National Institute of Science and Technology	ENDF/B-VII.1	MCS
Mexico	ININ: Instituto Nacional de Investigaciones Nucleares	ENDFB/VIII.0	Serpent 2.1.30
Romania	RATEN: Institute for Nuclear Research	ENDFB/VIII.0	Serpent 2.1.31, MCNP 6.1
Russia	IPPE: Institute of Physics and Power Engineering	ROSFOND10+	MMKC
Russia	NRCKI: National Research Center: Kurchatov Institute	JEFF-3.3	Serpent 2.1.31, MCNP
Slovakia	VUJE:	ENDF/B-VII.1	Serpent 2.1.31
USA	NRC: Nuclear Regulatory Commission	ENDF/B-VII.1	Serpent 2.1.30

A. Gomez, R. Lopez, J. Galicia et al.

Output 00	Blind results ●000	Conclusions 0000

Deterministic k_{eff}

Deviations in pcm from average values up to 2000 pcms difference between participants.

Output 00	Blind results ○●○○	Conclusions

Deterministic normalized power path

Fuel SA	1-0	16	1-09)	П-3	3	ш.	40	IV-	58
	Value	Dev (%)	Value	Dev (%)	Value	Dev (%)	Value	Dev (%)	Value.	Dev (%)
Average	1.14	1.14654 1.10125		29	1.024	53	0.931	199	0.823	340
KAERI	1.14825	-0.15	1.09960	0.15	1.01813	0.62	0.91719	1.59	0.81683	0.80
PSI	1.21179	-5.69	1.14945	-4.37	1.02547	-0.09	0.89232	4.26	0.72097	12.44
ININ	1.16514	-1.62	1.11009	-0.80	1.02752	-0.29	0.91743	1.56	0.77982	5.29
SSL	1.05100	7.46	1.04600	5.02	1.02700	-0.24	1.00100	-7.41	0.97600	-18.53

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

A. Gomez, R. Lopez, J. Galicia et al.

Output 00	Blind results 00●0	Conclusions 0000

Stochastic *k*_{eff}

Deviations in pcm from average values ranked in ±400 pcm (800 pcms in the most extreme cases)

Output 00	Blind results 000●	Conclusions 0000

Stochastic normalized power path

Fuel SA	1-1	06	14	19	п-	33	ш.	40	IV-	68 Dev (%)
	Value	Dev (%)								
Average	1.1	430	1.05	992	1.0	75	0.91	11	0.81	92
RATEN-1	1.1483	-0.46	1.1016	-0.22	1.0210	-0.35	0.9181	0.32	0.8110	1.01
ININ	1.1488	-0.50	1.1017	-0.23	1.0205	-0.30	0.9159	0.57	0.8131	0.75
SCK-CEN	1.1479	-0.43	1.1014	-0.20	1.0198	-0.23	0.9183	0.30	0.8126	0.81
IAEA-1	1.1699	-2.35	1.1214	-2.02	1.0291	-1.14	0.8959	2.73	0.7837	4.34
IAEA-2	1.1520	-0.79	1.1042	-0.46	1.0133	0.41	0.9158	0.57	0.8146	0.57
IAEA-3	1.1530	-0.87	1.1042	-0.46	1.0133	0.41	0.9149	0.67	0.8146	0.57
IAEA-4	1.1518	-0.77	1.1031	-0.36	1.0141	0.34	0.9157	0.59	0.8154	0.47
IAEA-5	1.1460	-0.26	1.0990	0.01	1.0126	0.48	0.9187	0.26	0.8238	-0.55
UNIST	1.1531	-0.88	1.0909	0.75	1.0241	-0.66	0.9193	0.20	0.8126	0.81
KAERI	1.1499	-0.60	1.1034	-0.39	1.0177	-0.03	0.9185	0.28	0.8105	1.07
NINE-UNIPI	1.1490	-0.52	1.1032	-0.37	1.0201	-0.25	0.9175	0.38	0.8103	1.10
NRCKI-1	1.0410	8.93	1.0520	4.29	1.0012	1.60	0.9876	-7.22	0.9182	+12.08
NRCKI-2	1.1489	-0.51	1.1029	-0.34	1.0202	-0.27	0.9180	0.34	0.8100	1.13

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 - のへで 11/18

A. Gomez, R. Lopez, J. Galicia et al.

Output 00		Refined results ●00	Conclusions 0000

Experimental results

RE2 position	$\rho\left(\frac{\Delta k}{k}\right)$	$\rho\left(\frac{\Delta k}{k}\right)$
190	3 95F-04	40
170	3.35E-04	34
151	2.45E-04	25
70	0.0 Estimated	0

$$ho = rac{k_{eff} - 1.0}{k_{eff}}$$

◆□ ▶ < ⑦ ▶ < ミ ▶ < ミ ▶ ミ ⑦ Q ○ 12/18</p>

A. Gomez, R. Lopez, J. Galicia et al.

Output 00		Refined results ○●○	Conclusions 0000

Deterministic refined results

FA CR	72 190mm	Dev (pcm)	72 170mm	Dev (pcm)	72 151mm	Dev (pcm)	72 70mm	Dev (pcm)	
Exp.	40.	40.0		.0	25	6.0) 0.0		
XJTU	150.2	-110	142.1	-108	135.1	-110	110.7	-111	
CEA-1	-475.2	515	-484.3	518	-492.4	517	-523.7	524	
CEA-2	732.6	-693	724.3	-690	716.8	-692	689.7	-690	
GRS	145.8	-106	136.8	-103	117.9	-93	99.9	-100	
CER	114.8	-75	107.2	-73	102.7	-78	79.2	-79	
IGCAR-1	-164.3	204	-175.5	210	-183.0	208	-206.7	207	
IGCAR-2	-204.1	244	-210.9	245	-215.4	240	-233.2	233	
JAEA	-24.6	65	-32.9	67	-40.6	66	-67.7	68	
KAERI	-354.6	395	-362.4	396	-369.8	395	-395.0	395	
UNIST	122.9	-83	114.9	-81	107.3	-82	81.0	-81	
ININ-1	429.4	-389	438.8	-405	430.8	-406	436.5	-436	
ININ-2	-95.9	136	-86.5	120	-94.6	119	-88.7	89	
NRCKI	-728.9	769	-713.5	748	-717.2	742	-705.6	706	
PSI	622.1	-582	605.3	-571	601.4	-576	569.7	-570	
UoC	246.4	-206	195.6	-162	150.8	-126	8.9	-9	
ANL-1	-423.2	463	-443.8	478	-444.6	470	-455.3	455	
ANL-2	-66.6	107	-75.1	109	-84.5	110	-110.6	111	
CLAE	-1009.0	1049	-1016.2	1050	-1023.4	1048	-1041.7	1042	
KIPT	264.3	-224	233.4	-199	204.7	-180	98.3	-98	

Adjustments in XS's generation and further developments in numerical solvers implied significant improvements ± 320 pcm from experimental data.

A. Gomez, R. Lopez, J. Galicia et al.

Output 00		Refined results 00●	Conclusions 0000

Stochastic refined results

FA CR	72 190mm	Dev (ncm)	72 170mm	Dev (nem)	72 151mm	Dev (pcm)	72 70mm	Dev (ncm)
Exp.	40.0		34.0	-	25.0		0.0	
SCK-CEN	-35.0	75.0	-92.1	126.1	-85.1	110.1	-102.1	102.1
VTT-1	330.9	-290.9	319.0	-285.0	313.0	-288.0	286.2	-286.2
VTT-2	363.7	-323.7	354.7	-320.7	344.8	-319.8	317.0	-317.0
CEA	594.4	-554.4	595.4	-561.4	580.6	-555.6	549.0	-549.0
HZDR-1	440.1	-400.1	430.1	-396.1	420.2	-395.2	396.4	-396.4
HZDR-2	9.0	31.0	-0.2	34.2	-4.4	29.4	-35.9	35.9
HZDR-3	91.9	-51.9	83.9	-49.9	76.9	-51.9	48.0	-48.0
HZDR-4	-140.9	180.9	-155.3	189.3	-158.1	183.1	-185.5	185.5
CER	192.6	-152.6	170.7	-136.7	160.7	-135.7	147.8	-147.8
IAEA-1	-11.0	51.0	-21.0	55.0	-25.0	50.0	-56.0	56.0
IAEA-2	794.6	-754.6	811.4	-777.4	805.5	-780.5	745.4	-745.4
IGCAR-1	-208.4	248.4	-215.5	249.5	-220.5	245.5	-249.6	249.6
IGCAR-2	-61.0	101.0	-68.0	102.0	-73.1	98.1	-101.1	101.1
IGCAR-3							275.2	-275.2
IGCAR-4							-461.1	461.1
IGCAR-5							963.6	-963.6
IGCAR-6							826.1	-826.1
NINE- UNIPI	-146.2	186.2	-152.0	186.0	-163.8	188.8	-183.2	183.2
JAEA	211.6	-171.6	215.5	-181.5	210.6	-185.6	173.7	-173.7
KAERI	18.0	22.0	5.0	29.0	9.0	16.0	-25.0	25.0
UNIST	66.0	-26.0	59.0	-25.0	60.0	-35.0	21.0	-21.0
ININ	48.0	-8.0	41.0	-7.0	28.0	-3.0	4.0	-4.0
RATEN-1	141.8	-101.8	121.9	-87.9	116.9	-91.9	97.9	-97.9
RATEN-2	129.8	-89.8	118.9	-84.9	112.9	-87.9	87.9	-87.9
IPPE	30.0	10.0	25.0	9.0	17.0	8.0	-8.0	8.0
NRCKI-1	-122.1	162.1	-126.2	160.2	-119.1	144.1	-151.2	151.2
NRCKI-2	70.9	-30.9	48.0	-14.0	35.0	-10.0	-39.0	39.0
VUJE	129.8	-89.8	133.8	-99.8	119.9	-94.9	97.9	-97.9
USNRC	-57.3	97.3	-88.7	122.7	-88.5	113.5	-106.2	105.2
CIAE	159.7	-119.7	172.7	-138.7	146.8	-121.8	81.9	-81.9
INEST	185.7	-145.7	120.2	-116.7	158.7	-133.7	145.8	-146.8

Average deviation from all participants was only 167 pcms from experiment.

V&V of neutronic codes with criticality tests performed in the CEFR

■ つへで 14/18

Output 00		Conclusions ●000

Conclusions

- All refined results presented improvements in the comparisons against experiment values.
- For deterministic:
 - ▶ In the blind phase calculation ranked from −900 to +1000 pcms, almost 2000 pcms of difference in the more extreme cases.
 - Reason: Very different numerical approaches implemented in the deterministic solvers going from pure diffusion in some cases to more complex transport solvers (18 different codes).
 - For refined phase: adjustments in XS's generation and further developments in numerical solvers implied significant improvements ±320 pcm's.

Output 00		Conclusions 0●00

Conclusions

- For stochastic:
 - 11 out of 20 participants used Serpent Monte Carlo code.
 - In blind phase, deviations in pcm from average values ranked in ±400 pcm (800 pcms in the most extreme cases) with just some exceptions with over 600 pcms as an absolute value for the homogeneous model.
 - In the refined phase, significant improvement was obtained in calculations, average deviation from all participants was only 167 pcms.
 - Improvements in this case come directly from model adjustments.

ININ

Output 00		Conclusions

Conclusions

Although stochastic results are more accurate, it is more notorious the improvement on refined phase in the case of deterministic codes

	Blind phase	Refined phase	Improvement
Deterministic codes	448 pcm	320 pcm	128 pcm
Stochastic codes	224 pcm	167 pcm	57 pcm

Output 00		Conclusions 000●

Acknowledgements

The data and information presented in the paper are part of an ongoing IAEA coordinated research project on "Neutronics Benchmark of CEFR Start-Up Tests – CRP-I31032".

et al.: XINGKAI HUO (CIAE), VLADIMIR KRIVENTSEV (IAEA), CHIRAYU BATRA (IAEA), T. K. KIM (ANL), M. JARRETT (ANL), EMIL FRIDMAN (HZDR), YOUQI ZHENG (XJTU), XIANAN DU (XJTU), J. BODI (PSI), K. MIKITYUK (PSI), DEOKJUNG LEE (UNIST), TUAN QUOC TRAN (UNIST), JIWON CHOE (UNIST), H. TANINAKA (JAEA), M. SZOGRADI (VTT), P. DARILEK (VUJE), A. HERNANDEZ-SOLIS (SCK-CEN), A. STANKOVSKIY (SCK-CEN), G. VAN DEN EYNDE (SCK-CEN), IULIANA ELENA VISAN (RATEN), ANDREEA MOISE (RATEN), VALERIO GIUSTI (UNIPISA), ALESSANDRO PETRUZZI (NINE), DI PASQUALE SIMONE (NINE).