

International Conference on Fast Reactors and Related Fuel Cycles

CEFR Physical Start-up Tests: the Core Specifications and Experiments

Speaker: Xingkai HUO

(through WebEx)

China Institute of Atomic Energy

19 April 2022

Contents

- CEFR Introduction
- Specifications for Benchmark
- Descriptions of Experiments
 - Fuel loading and criticality
 - Control rod worth
 - <u>Sodium void reactivity</u>
 - <u>Temperature reactivity</u>
 - <u>Subassembly swap reactivity</u>
- Extensive Work Proposed

CEFR Introduction

- The first fast reactor in China
- Sodium-cooled fast reactor with nominal power of 65MWt(20MWe)
- Reached the first criticality in July 2010
- Generated electricity at 40% full power and was connected firstly to the grid in July 2011
- Generated electricity at 100%
 power and operated continuously
 for 144 hours in Dec. 2015
- Currently, the CEFR is at shutdown state for maintenance and licensing for planed irradiation tasks.

1. Introduction of CEFR

Main parameters

Parameter	Value		
Thermal/electric power, MW	65/20		
Designed life, year	30		
Maximum burn-up, MWd/t	60,000		
Maximum neutron flux, cm ⁻² s ⁻¹	3.2×10 ¹⁵		
Refueling period, day	80		
Diameter/height of main vessel, m	8.0/12.2		
Covering gas pressure, MPa	0.005		
Core inlet/outlet temperature (full power), °C	360/530		
Fuel	UO2(64.4%)		
Max.neutron flux	E (Total), 3.2×1015cm-2s-1 E > 0.1MeV, 2.5×1015cm-2s-1		
Max./Ave. burnup	60.0/44.5 MWd/kg		
Core height/diameter	450/600mm		
UO ₂ mass	428kg		
Max linear power	43 kW/m		

3 safety rods (SA) for quickly shutdown of the reactor;

3 shim rods (SH) for reactivity compensation;

2 regulatory rods (RE) for small reactivity compensation and reactor power adjustment.

CEFR Plant

Main Control Room

Core and Peripheral Shielding

The Core after Installation of Mock-up Subassemblies

List of CEFR Start-up Tests

Starting from 5 June 2010, including 4 categories (totally 18 tests):

List of CEFR Start-up Tests

Tests Selected for the Benchmark (IAEA CRP)

IAEA CRP: Neutronics Benchmark of CEFR Start-Up Tests

(CRP Members at 2nd RCM, Beijing, Oct 2019)

The Contents of the Specifications

Benchmark Specifications 《基准例题详细说明》

Development of the Specifications

Version	Complete Date, y-m-d	Scope of Issuing
1	2018-05-23	CIAE&IAEA
2	2018-05-25	CIAE&IAEA
3	2018-06-01	Distributed
	2018-06-11 to 06-14	1 st RCM
4	2018-10-5	CIAE internal
5	2018-10-19	Distributed
6	2019-04-29	Distributed
	2019-10-28 to 11-01	2 nd RCM
7	2019-11-31	Distributed
8		updating

Participants' Comments

• Totally 97 comments received by email

No. S	olved	Date	Name	Туре	Object	Simplified Question	Original Question	Reply	Final Solution	
1 1	/ES	2019/3/26	Jiwon Choe	contradiction	Criticality	70 or 80mm of RE2 position?	I have one more question about criticalit	The Version 5 is right. The RE2 po	os 70mm(source: 试验	结果报告-资
2 1	/ES	2019/3/25	Jiwon Choe	contradiction	Geometry	exact diameter of fuel pellet?	What is the exact value of fuel diameter? It i	This is an important issue. The r	o Not important. Ever	n the whole
3 1	/ES	2019/3/25	Jiwon Choe	contradiction	Geometry	exact pin pitch?	What is the exact value of pin pitch? It is	The pitch is 6.95mm, which is a r	ef Final data to give i	n specifica
4 1	/ES	2019/3/25	Jiwon Choe	additional requirement	Geometry	more info of axial SS shielding?	What is exact material composition and g	On CIAE side, we think the geom	etry of upper & lower	structure o
5 1	/ES	2019/3/25	Jiwon Choe	information absence	Material	S.S. composition?	May I get exact SS composition? According	This is also an issue that is perp	lexing us. Actually di	fferent com
6 1	/ES	2019/3/25	Jiwon Choe	contradiction	Material	exact fuel density?	What is the exact value of fuel density? T	There is no need to give the actu	al density now, as th	e total mas
71	'ES	2019/3/25	Jiwon Choe	contradiction	Geometry	length of fuel SA?	According to Table 2 in version 5, the tota	The difference comes from simpl	lification process. The	ere won't m
8 1	/ES	2019/3/25	Jiwon Choe	mistake	Geometry	30 degree rotation!	The dimension of pin pitch is not matche	Yes, you are right. We are sorry fo	or the mistake in drav	wing picture
9 1	/ES	2019/3/25	Jiwon Choe	ambiguous	Void	void region scope, upper and lower	What is the exact range of void region? The	The voided region starts from the	e nozzle all the way u	p to the ha
10 1	/ES	2019/3/25	Jiwon Choe	ambiguous	Void	void region scope, fuel inside?	Is there fuel pellet in the experimental fu	There are fuel pellets in the exp	erimental SA for void	reactivity. 1
11 \	/ES	2019/3/25	Jiwon Choe	mistake	Swap	SA layout error in (5-19) position	Is the 'test case (5-19)' in table 21 (versio	Yes, a mistake happened here. P	osition (5-19) should	be loaded
12 \	'ES	2019/3/25	Jiwon Choe	ambiguous	Swap	difference between 'multi-' and 'single	What is the difference between 'Table 22	"By multiple rods" means the me	asurement is done b	y changing
13 \	/ES	2019/3/25	Jiwon Choe	mistake	Swap	no more than 79 instead of 72	According to Table 20 in version 5, 79 fuel	Yes, you are right. Sorry for the m	istake. It should be "	the numbe
14 1	O	2019/3/25	Jiwon Choe	additional requirement	Material	info of irridation device?	The composition of irradiation device which d	OK, we will try to find those inform	ation and provide it late	57.
15 1	/ES	2019/3/25	Jiwon Choe	mistake	Geometry	figure name error	The figure file name should be changed a	Yes, thank you for finding that! I	t should be "neutron	source SA"
16 \	/ES	2019/3/26	Chirayu Batra	contradiction	Void	void volume don't match	Are there fuel rods in void-SA? The volum	Yes, there are fuel rods in void-S	A. I will check the vol	ume later.
17 1	/ES	2019/3/26	Chirayu Batra	additional requirement	Geometry	comparision of axial elevations	The elevations of axial sectors of differen	Yes, it is a good idea and has be	en proposed by more	than one.
18 1	/ES	******	Devan Kunhiraman	mistake	Geometry	undefined 1.2464mm	1. In Mock-up fuel SA, there is an un-name	Here is a mistake. The value was	already revised in fi	gure 'Mock
19 \	/ES	******	Devan Kunhiraman	contradiction	Geometry	mismatch of total length of fuel SA	2. In fuel SA, the sum of total length, as p	Sorry for the mistake, which occu	rred during the simpl	ification p
20 1	/ES	*******	Devan Kunhiraman	development	Geometry	to give a common reference line	3. The geometries of Boron shielding and	Yes, I am considering to do this v	work.	
21 \	/ES	******	Devan Kunhiraman	development	Geometry	side by side comparison of other SAs	4. In Figure 5, rod positions of absorber ro	This is a very good suggestion. I	will do it.	
22 1	/ES	*******	Devan Kunhiraman	development	Geometry	elevation comparison of all SAs	5. Kindly give an elevation comparison of	Comments No. 3, No. 4, and No. 5	focus on the same p	roblem. I w
23 \	/ES	*******	Devan Kunhiraman	ambiguous	Void	void region scope	6. In section 3.7, it is mentioned that in e	Actually, the vacuum was obtain	ed by sealing the inle	ets and out
24 \	/ES	*******	Devan Kunhiraman	mistake	Detector	detector axial positions	7. Axial height of start-up detectors with r	Sorry, I made a mistake in the fig	jure of detectors (Figu	ure 13). In t
25 1	/ES	*******	Devan Kunhiraman	additional requirement	Material	materials till out-of-core detectors	8. The material present between the oute	It's encouraging to know that you	would like to simula	ate the out
26 1	/ES	*******	Devan Kunhiraman	information absence	Material	unit of enrichment	9. In Table 2, the enrichment of B-10 is given	Sorry, here is a mistake in Table	2 92atom%, source: P	lussian Phy
27 1	/ES	********	Armin Seubert	additional requirement	Material	helium density of rod?	The helium density is not given - though i	neutronically not highly relevant,	w Actually, pressure (of He is pro
28	/ES	******	Armin Seubert	additional requirement	Material	sodium density equation	The sodium density is given in terms of a	linear dependence in Emil's Exce	I sheet. Nevertheless	s, it might t
29 1	O	*******	Armin Seubert	contradiction	Geometry	spring height and expansion issue	From our understanding, there seems to be an	n issue with the calculation of the sp	ing beight. In Emil's ex	cel sheet, th
30 1	/ES	******	Devan Kunhiraman	ambiguous	Geometry	drawings of reflector and shielding SA	Revised Drawings of Reflector and Shield	ing Assemblies showing clearly t	he axial details are a	wailble nov
31 1	O	2018/10/5	UNIST	additional requirement	Geometry	more info of outer core	Dimension of reactor core (baffle/barrel/vess	el) to describe reflector region	以設活 Window	/Se

Chapters:

- 1 Introduction
- 2 Overview of CEFR
- 3 Core subassemblies
- 4 Stainless steel
- 5 Sodium
- 6 Experiment Description
- 7 Summary

SA Types:

- 3.1 Fuel SA
- 3.2 Control SA
- 3.3 SS SA
- 3.4 Boron Shielding SA
- 3.5 Neutron Source SA
- 3.6 Mock-up Fuel SA
- 3.7 Experimental Fuel SA for Sodium Void Measurement
- 3.8 Experimental Fuel SA for Foil Irradiation
- 3.9 Experimental SS SA for Foil Irradiation

Experiments:

- 6.1 Fuel loading and criticality
- 6.2 Control rod worth measurements
- 6.3 Sodium void reactivity
- 6.4 Temperature reactivity
- 6.5 Subassembly swap reactivity
- 6.6 Foil activation measurements

For each experiment:

- 6.x.1 State of core
- 6.x.2 Experiment process
- 6.x.3 Expected output

中国首座快堆中国实验快堆(CEFR)于2010年7月21日首次临界。

upper shielding

rod bundle

Main Parameters of Core SAs

	Fuel SA		Control SA		SS SA		Boron	Neutron
	Fuel	blanket	Regulating	Shim, safety	Type I&II	Type Ⅲ&IV	Shielding SA	Source SA
Number of SAs in core (operation loading)	79		2	3+3	39	355	230	1
Length of SA, mm	25	592	2580		2592	2592	2592	2580
Mass of SA, kg	29	~31	227	~23	41~43	42~44	31~33	39~41
Number of rods	(51	7	7	7	1	7	7 ⁽¹⁾
Rod lattice pitch, mm	6	.95	15	5.5	20.6	N/A	20.15	20.7
Outer diameter of	6.00		14.9		20.0	54.0	19.2	20
Inner diameter of cladding, mm	5.40		12.9		N/A ⁽²⁾	N/A ⁽²⁾	17.2	N/A
Diameter of spacer wire, mm	0.95		1.3×	0.6 ⁽³⁾	0.6	N/A	0.95	1.3×0.6 ⁽³⁾
Screw pitch of spacer wire, mm	100		100		100	N/A	100	100
Effective material and	UO ₂		B ₄ C				B ₄ C,	
enrichment	64.4±0.5, wt%	0.3~0.72 <i>,</i> wt%	19.6a% ¹⁰ B (Natural)	92.0a% ¹⁰ B	SS	SS	19.8a%10B, Natural	Ct-252
Total mass of UO2 or B4C in each SA (kg)	5.30±0.13	1.28/ 3.23 ⁽⁴⁾	0.	87	N/A	N/A	2.43	0.43E-6
Length of effective material, mm	450	100/ 250 ⁽⁵⁾	5:	10	N/A	N/A	800	N/A

Total mass of fuel/blanket in each fuel SA

				easured value	d value		
		Design value	Average	Standard Deviation	Minimum	Maximum	Total Number *
	Mass of UO2, kg	5.30±0.13	5.28127	0.01295	5.2570	5.3421	
	Mass of U, kg	4.66 ± 0.12	4.64602	0.01167	4.6246	4.6979	
Fuel	Mass of U- 235, kg	N/A	2.98197	0.00852	2.9667	3.0156	
	Enrichment of U-235, wt%	64.4±0.5	64.18315	0.09761	64.08	64.41	00
	Mass of UO2, kg	4.51±0.30	4.56629	0.01548	4.5345	4.6079	89
	Mass of U, kg	3.97±0.28	4.01855	0.01418	3.9940	4.0587	
Blanket	Mass of U- 235, kg	N/A	0.0179	3.1403E-4	0.0172	0.0183	
	Enrichment of U-235, wt%	0.3~0.72	0.44532	0.00719	0.42924	0.45646	
					24		

The measurement of starting point of nuclear heating to guarantee that all tests are carried out without temperature effects.

The real-time output of the reactivity meter used in CEFR

The reactivity meter response with SA#1 dropped

Foil Detector

High purity Germanium Gamma-Ray Spectrometer

Fuel Loading and Criticality

Test Method

- Using neutron count inverse extrapolation method at subcriticality state to get fuel SA number for initial criticality ('clean' criticality)
- Using reactivity extrapolation method at supercriticality state to get RE rod position for criticality

D Reactor core state before fuel loading

SA type	Number	
Dummy fuel SA	81	
Neutron sourece SA	1	
Control rod	8 SA:3 SH:3 RE:2	72 SA SH C SA C SA
S.S. reflector	336 II:37 III:132 IV:167	
Boron shielding	230	575
Spent fuel storage	56	The predicated(by calculation) number of fuel
Total	712	SAS to be loaded for first criticality is 72
		575 real SA have been loaded before fuel loading

Test #1 Fuel Loading and Criticality

□ Safety principle for fuel loading

- At least two serials of neutron count system on normal working condition
- ½ loading principle and minimal loading principle
- Loading fuel SA near control rod or with large reactivity firstly (such as fuel SA in central position)
- Symmetry principle
- Only one SA can be loaded each batch after keff approaching and larger than 0.99
- Transition to super-criticality state only after keff larger than 0.997

G Fuel loading process

Batch 1, +24/24

Batch 2, +16/40

Loading of 2 incore S.S. SA

Batch **3**, +6/46

Batch 5, +6/61 C2 C2 PC C2 C2 C2 C2 1#调节棒 7-13 7-12 7-11 7-10 7-9 7-8 7-7 C2 C2 C2 13004404 710114 7-14 6-11 7-6 AZ C2 C2 III 111 IV 1#安全棒 7061252 5-7 5-5 7-15 7-5 5-6 C2 11 Ш 111 IV 722 4-4 5-4 KC 11 111 IV 3#补偿棒 3-5

Batch 6, +4/65

Core state for initial criticality

Using reactivity extrapolation method to get final criticality state

- After loading 72 fuel SAs, there is a little excess reactivity which need to be compensated by control rod; Using RE2 to compensate the excess reactivity with all other control rods out of core
- Move RE2 to make CEFR core to super-criticality and measure reactivity
- Using reactivity extrapolation method to determine final criticality position for RE2

Using reactivity extrapolation method to get final criticality state

RE position H _i (mm)	Double period T(s)	ρ(Δk/k)	RE2 Relative worth η(H _i)
151	232.0	2.45E-04	0.231
170	162.0	3.35E-04	0.291
190	134.0	3.95E-04	0.332
Extrapolated $\eta(H_0)$	0.070	Extrapolated rod position H _o (mm)	70.0

Determination of RE2 criticality position by using source range IB

RE2 criticality position determined by different detectors

	Source range detectors				
	IA	IB	IIA	IIB	
Hcri/mm	70	70	68	68	

□ Final state for CEFR initial criticality state

- -72 fuel SAs loading
- Control rod position:
 - SA all out of core
 - SH all out of core
 - RE RE1 out of core, RE2 at the position of 70 mm

<u>keff=1.00000 ± 0.00005 (reactivity mearsurment error)</u>

3. Experimental method(Irradiation tests of foils)

3. Experimental method(Irradiation tests of foils)

In order to ensure no high temperature oxidation during the irradiation, the irradiation tube shall be filled with inert gas before entering the reactor, and leakage test shall be carried out. The special test assembly shall be cleaned, dried and

List of possible extension work (1/2)

- 1. Dynamic simulation
 - rod drop transient (detector signal and measured/calculated reactivity could be provided)
- 2. Burn-up calculation
 - measured value: number density of MA in spent fuel after one cycle (nominally 82 EFPD);
 - large uncertainty in obtaining experimental data, but can be expected...
 - based on fixed CR positions (difficult to retrieve the actual CR positions due to frequent shutdowns and abnormal operations)
- 3. Detector response factor (deep penetration problem)
 - out-of-core detector is ~6m away from active core;
 - influence to the detector by temperature/sodium density can be studied;
 - CIAE could provide structures in the neutron path from core to detector, as detailed as we can ...

List of possible extension work (2/2)

- 4. Spectrum of typical positions
 - a comparison of spectrum calculated by different codes;
 - with agreed and fixed group structure;
 - several typical positions could be selected;
- 5. Comparison of group XS generated
 - with agreed and fixed group structure;
 - targeting several important reaction types;
- 6. comparison of calculated β_{eff}
 - 4. In CEFR experiments, the direct measured value is reactivity rather than keff;
 - 5. keff is obtained by inverse kinetics and in-hour equation, both of which rely on calculated β_{eff}
 - 6. A joint calculation and comparison of β_{eff} will be a meaningful supplement to the CRP and a good validation of codes and nuclear data of participants
- 7. Nuclear data adjustment based on experiment

Thank you for your attention!

