

SAFETY ANALYSIS OF THE ARC-100 SODIUM-COOLED FAST REACTOR

TYLER SUMNER AND ANTON MOISSEYTSEV Argonne National Laboratory

International Conference on Fast Reactors and Related Fuel Cycles: Sustainable Clean Energy for the Future (FR22) 19–22 April 2022, Vienna, Austria

OVERVIEW

- ARC-100:
 - 100 MWe fast reactor
 - Long-lived core with low burnup reactivity swing
 - Sodium coolant
 - Metallic fuel
 - Pool type
- SAS4A/SASSYS-1 model represents:
 - Core
 - Primary heat transport system
 - Secondary heat transport system
 - RVACS
 - DRACS

- Safety Design Philosophy:
 - Relies on passive safety
 - Leveraging safety characteristics of key design features
- Unprotected transients analyzed:
 - Station blackout
 - Loss of heat sink
 - Transient overpower
 - BOL, MOL, and EOL

SAS4A/SASSYS-1 CORE MODEL

Argonne (

SAS4A/SASSYS-1 HEAT REJECTION SYSTEM MODEL

- PRIMAR-4 module used to model ARC-100 heat transport systems
 - Primary
 - Intermediate
 - DRACS
 - RVACS

METRICS & CRITERIA

Metrics

- Maintain coolable fuel pin geometry
- UTOP, USBO, ULOHS
- Expected to have frequencies of occurrence below 10⁻⁶ per reactor-year
- Conservatively evaluated against criteria for beyond design basis events
- Note: These metrics are preliminary and will depend on results of PRA

<u>Criteria</u>

- No sodium boiling
- No fuel melting
- No significant loss of cladding from FCCI
 - Threshold at 715°C
- Maintain reactor vessel integrity
 - Key structures below 704°C

RESULTS

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

BOL UNPROTECTED STATION BLACKOUT

- Loss of electrical power to all plant systems
- Primary pumps trip

- Intermediate pumps trip
- SG heat rejection to zero
- DRACS air baffles open

BOL UNPROTECTED STATION BLACKOUT

BOL UNPROTECTED TRANSIENT OVERPOWER

- Single most reactivity control rod withdrawn from reactor
- BOL: 47¢ at 2¢/s

- Pumps remain on
- SG conservatively assumed to continue rejecting at 100%

BOL UNPROTECTED TRANSIENT OVERPOWER

BOL UNPROTECTED LOSS OF HEAT SINK

 Simultaneous trip of intermediate sodium pumps All heat rejection through the balance of plant is conservatively assumed lost

SUMMARY AND CONCLUSIONS

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

SUMMARY AND CONCLUSIONS

Beginning of Life	Steady-State	USBO	UTOP	ULOHS
Peak Fuel Temp.	564°C	755°C	861°C	568°C
Fuel Melting Margin	659°C	468°C	362°C	655°C
Peak Cladding Temp.	548°C	752°C	836°C	554°C
Max. Clad Penetration	0%	0.1%	0.5%	0%
Peak Sodium Temp.	547°C	751°C	833°C	553°C
Sodium Boiling Margin	396°C	193°C	122°C	388°C
Peak Hot Pool Temp.	510°C	560°C	651°C	516°C
Reactor Vessel Margin	194°C	144°C	53°C	188°C

- Severe unprotected transient scenarios analyzed with SAS4A/SASSYS-1 to assess ARC-100 safety characteristics
 - Very unlikely double-fault events with an assumed failure of the highly reliable reactor protection system
- ARC-100 maintains large safety margins
 - Due to design features that utilize inherent passive responses to unanticipated conditions and equipment failures
 - Sodium coolant provides superior heat removal at near atmospheric pressures with large margins to boiling
 - Metallic fuel operates at relatively low temperatures due to its high thermal conductivity.
 - Pool-type primary system provides a large thermal capacity
 - Allows for shutdown heat removal through the RVACS and DRACS systems via natural circulation
 - Inherent reactivity feedbacks responsible for reducing power to match the total available heat rejection
- These results demonstrate the capability of the ARC-100 design to provide protection against reactor damage during low probability accident sequences resulting from multiple equipment failures

THANK YOU FOR YOUR ATTENTION

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

