PAUL SCHERRER INSTITUT

Đorđe Petrović :: Advanced Nuclear Systems :: Paul Scherrer Institute

Coupled Neutronic/Thermal-Hydraulic Simulation of Unprotected Loss of Flow Test at Fast Flux Test Facility

Authors: **Đorđe Petrović Dr. Konstantin Mikityuk** International Conference on Fast Reactors and Related Fuel Cycles | FR22 April 20, 2020 Vienna, Austria

- Introduction
- Benchmark Specifications
- Simulation Tools Applied
- Application to Fast Flux Test Facility
- Results
- Summary and Conclusions

• Introduction

- Benchmark Specifications
- Simulation Tools Applied
- Application to Fast Flux Test Facility
- Results
- Summary and Conclusions

Introduction: Fast Flux Test Facility

- Fast Flux Test Facility (FFTF)
 - Research reactor operated by U.S. Department of Energy
 - Thermal power: 400 MW
 - Coolant: Sodium
 - Fuel: Mixed-OXide, UO₂ PuO₂
- Passive Safety Testing program
 - 13 unprotected Loss of Flow WithOut SCRAM (LOFWOS) tests
 - Confirmation of safety margins of Sodium-cooled Fast Reactor (SFR) design
 - Provision of data for **computer code validation**
 - Demonstration of inherent and passive safety benefits of Gas Expansion Modules (GEM)

- Proposed by Argonne National Laboratory and Pacific Northwest National Laboratory
- IAEA Coordinated Research Project 'Benchmark Analysis of FFTF Loss of Flow Without Scram Test'
- LOFWOS Test #13
 - Power: 49.8% of nominal power
 - Flow rate: 100% of nominal flow rate

- Introduction
- Benchmark Specifications
- Simulation Tools Applied
- Application to Fast Flux Test Facility
- Results
- Summary and Conclusions

- LOFWOS Test #13 performed during cycle 8C of FFTF's operation
- Assembly types present in the core during the corresponding cycle:
 - Driver Fuel Assembly
 - In-Core Shim Assembly
 - Reflector Assembly
 - Control Rod
 - Safety Rod
 - Materials Open Test Assembly
 - Fracture Mechanics Assembly
 - Gas Expansion Module

Benchmark Specifications: Gas Expansion Modules

- Nominal conditions: pressure of the Sodium **compresses** the **gas** to a level above the top of the active fuel column
- Loss of flow transient: the pressure exerted on the gas by the Sodium decreases, allowing the **gas** to **expand**
- Low flow rates: the Sodium-gas interface level within each GEM would be below the bottom of the active fuel column. The displaced Sodium at the periphery of the core leads to the **increased radial neutron leakage** and the corresponding **decrease** of the **core reactivity**

Benchmark Specifications: Experimental Data

Evolution of the core **power** as **measured** [1]

Evolution of the core flow rate as measured [1]

[1] Lucoff, D. M., September 1987, 'Passive Safety Testing at the Fast Flux Test Facility', WHC-SA-0046-FP, Westinghouse Hanford Company, Washington, United States.

Benchmark Specifications: Experimental Data

Calculated evolution of power-to-flow ratio

Evolution of the **coolant** outlet **temperature** as **measured** [1]

[1] Lucoff, D. M., September 1987, 'Passive Safety Testing at the Fast Flux Test Facility', WHC-SA-0046-FP, Westinghouse Hanford Company, Washington, United States.

Benchmark Specifications: Experimental Data

Evolution of the core **reactivity** as **measured** [1]

Breakdown of the core **reactivity** evolution as **simulated** by Point Reactor Kinetics model

[1] Lucoff, D. M., September 1987, 'Passive Safety Testing at the Fast Flux Test Facility', WHC-SA-0046-FP, Westinghouse Hanford Company, Washington, United States.

- Introduction
- Benchmark Specifications
- Simulation Tools Applied
- Application to Fast Flux Test Facility
- Results
- Summary and Conclusions

Simulation Tools Applied: FAST Code System

- Fast-spectrum Advanced Systems for power production and resource managemenT (FAST) code system
 - A general tool for the analysis of core **statics** and **dynamic behavior** of advanced fast spectrum reactor concepts
 - Assembled from **already existing codes**, which, where necessary, have been **modified** to simulate the features of the fast reactors
- Constituents
 - Serpent 2 Monte Carlo code
 - PARCS reactor kinetics code
 - **TRACE** thermal-hydraulics code
 - **FRED** thermal-mechanics code

Simulation Tools Applied: Constituents and Modifications

Serpent 2: A Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code

• Nuclear data library: **ENDF/B-VII.0**

Purdue Advanced Reactor Core Simulator

- Modification of macroscopic cross-section data calculation
 - Logarithmic dependence of core reactivity on fuel temperature
 - Radial expansion
 - Axial expansion
 - Relative insertion of control rods

TRAC/RELAP Advanced Computational Engine

- **Rehme** correlation: calculation of friction factor to account for the presence of the wire wraps around the fuel bundles
- Mikityuk correlation: calculation of the heat transfer to the liquid metal coolants

- Introduction
- Benchmark Specifications
- Simulation Tools Applied
- Application to Fast Flux Test Facility
- Results
- Summary and Conclusions

- Core **geometry** and **material composition** provided in the benchmark specifications
- Statistical uncertainty on the order of 1 pcm
- Reactivity feedback effects
 - Axial expansion
 - Radial expansion
 - Fuel Doppler constant
 - Fuel density
 - Structure density
 - Sodium density
 - Control rods
 - Safety rods
 - Gas Expansion Modules

Application to Fast Flux Test Facility: Neutron Kinetics Model

- **Reduction** of **size** to simplify convergence and coupling
- **Reproduction** of **power distribution** obtained by **static neutronics model**
- Number of neutron energy groups: 24
- Number of delay neutron groups: 8

Application to Fast Flux Test Facility: Thermal-Hydraulics Model

- **Point Reactor Kinetics** approach employed in modeling the core **neutronics**
- Boundary conditions provided in the benchmark specifications
 - Pump speeds of the primary pumps
 - Secondary loop flow rates
 - Sodium outlet temperature for 12 dump heat exchanger modules

Application to Fast Flux Test Facility: Coupled Model

- Coupling scheme based on the exchange of data
 - Power profiles
 - Temperature and density fields
 - Flow rates
- Special attention devoted to the model of Gas Expansion Modules

- Introduction
- Benchmark Specifications
- Simulation Tools Applied
- Application to Fast Flux Test Facility
- Results
- Summary and Conclusions

Results: Static Neutronics Simulation

Parameter		Value
Effective Multiplication Factor		1.00574 ± 0.00003
Reactivity		571 ± 3 pcm
Delay Neutron Fraction		$(3.209 \pm 0.001) \cdot 10^{-3}$
Prompt Neutron Lifetime		$(5.524 \pm 0.001) \cdot 10^{-7} \text{ s}$
Reactivity Feedback Coefficients	Axial Expansion	-0.221 ± 0.007 pcm/K
	Radial Expansion	-1.522 ± 0.012 pcm/K
	Fuel Doppler Constant	-658 ±10 pcm
	Fuel Density	-1.363 ± 0.020 pcm/K
	Structure Density	-0.039 ± 0.009 pcm/K
	Sodium Density	-0.274 ± 0.023 pcm/K
Reactivity Worths	Safety Rods	-5809 ± 10 pcm
	Control Rods	-6014 ± 10 pcm
	Gas Expansion Modules	-475 ± 7 pcm
Incremental Reactivity Worths	Control Rods	-8.95 ± 0.65 pcm/mm
	Gas Expansion Modules	-0.49 ± 0.01 pcm/mm

Results: Static Neutronics Simulation

S-curve characteristic of **control rods**

S-curve characteristic of Gas Expansion Modules

Results: Static Neutronics Simulation

Assembly **power** distribution

Map of assembly **power peaking factors**

Results: Coupled Simulation and Comparison to Experimental Data

Comparison of the core **power** evolution to the experimental data

Comparison of the core **flow rate** evolution to the experimental data

Results: Coupled Simulation and Comparison to Experimental Data

Comparison of the **coolant** outlet **temperature** evolution to the experimental data

Comparison of the core **reactivity** evolution to the experimental data

Comparison of the **coolant** outlet **temperature** evolution to the experimental data

- According to [2], **discrepancy** can be explained
 - Magnitude: Simulated heat transfer by interassembly flow and the radial core heat transfer might be overestimated
 - **Time shift**: Heat transfer coefficient between primary and secondary loop and a possible error in thermal inertia of intermediate heat exchangers
 - **Reactivity**: simply 'follows' the state variables. In addition, absence of the neutronic model of Core Restraint System

[2] Wang, S., Mikityuk, K., Petrović, D., Zhang, D., Su, G., Qui, S., Tian, W., December 2021, 'Validation of TRACE capability to simulate unprotected transients in Sodium Fast Reactor using FFTF LOFWST Test #13', Annals of Nuclear Energy 164, 108600.

Results: Axial Power Profiles

Evolution of the core **axial power profile** subsequent to the **activation** of **Gas Expansion Modules**

 $\frac{dn(t)}{dt} = \frac{\rho(t) - \beta}{\Lambda} n(t) + \sum_{i} \lambda_i C_i$ $\frac{dC_i(t)}{dt} = \frac{\beta_i}{\Lambda}n(t) - \lambda_i C_i(t)$ FLECTOR ORE SUPPO

Results: Representativeness of Gas Expansion Modules

• Representativeness of Gas Expansion Modules in modeling the **purposeful voiding** of fast reactor cores

Parameter	Gas Expansion Modules	Inner Sodium Plenum
Leakage	Radial	Axial
Total Reactivity Worth	475 ± 7 pcm	1386 ± 21 pcm
Outward Facing Surface	1.814 m ²	5.920 m ²
Surface Reactivity Worth	$262 \pm 4 \text{ pcm/m}^2$	$234 \pm 4 \text{ pcm/m}^2$

Results: Importance of Gas Expansion Modules

Coolant boiling would occur 67 s after the beginning of the LOFWOS Test #13

Gas Expansion Modules play a crucial role in preserving the **intrinsic** and **passive safety** of the FFTF's core during the cycle 8C

- Introduction
- Benchmark Specifications
- Simulation Tools Applied
- Application to Fast Flux Test Facility
- Results
- Summary and Conclusions

Summary and Conclusions

Summary

- Static neutronics / Serpent 2 Monte Carlo simulation
- Neutron spatial kinetics / PARCS simulation
- Thermal-hydraulics / TRACE simulation
- Coupling

Conclusions

- Reactor core of an SFR features potential to achieve the inherent and passive safety
- Lessons learned during the operation of FFTF prove the capability of **Gas Expansion Modules** to **mitigate** the consequences of **Unprotected Loss of Flow** accident
- Validation of the FAST code system and the proof of its performance in modeling the transients relevant for safety assessment of the SFR design and fast reactor cores in general

- Correct model of heat transfer phenomena in TRACE
- Explicit model of Gas Expansion Modules in TRACE
- Model of thermal-mechanics and fuel performance aspects of the LOFWOS Test #13
- Coupling to the fuel behavior code **FRED**
- Correction of the radial (and axial) expansion reactivity feedback effect in order to account for the presence of the **Core Restraint System**

Wir schaffen Wissen - heute für morgen

