The ITER Disruption Mitigation Strategy

M. Lehnen, S. Jachmich, U. Kruezi and the ITER DMS Task Force ITER Organization

Disclaimer:

ITER is the Nuclear Facility INB no. 174. This presentation explores physics processes during the plasma operation of the tokamak when disruptions take place; nevertheless the nuclear operator is not constrained by the results presented here. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

- Design of the Disruption Mitigation System
- Mitigation Requirements
- DMS Task Force Activities

EP Shattered Pellet Injectors for a total of 24 pellets

Equatorial ports

Upper ports equipped 3 x 1 SPI

Injectors dedicated to late injection after the thermal quench

> Hydrogen, Neon size TBD strong shattering

Upper ports

ITER DMS Configuration

Preliminary design of DMS components

Schedule for the design of the ITER DMS

- Injector configuration

ITER DMS Present requirements for thermal load mitigation

Thermal energy conducted to the first wall and divertor below 20 MJ

- Assimilation of a maximum of $5 \ge 10^{22}$ Ne atoms
- ? Quantity from EM load limit

No scaling law and simulations not yet quantitative

- Experiments + 3D MHD modelling (validation / extrapolation) for energy and size scaling
 - Impact of massive H injection on radiation efficiency to be assessed (possibly needed for RE avoidance)
 - Identify ideal fragment size distribution and velocity for maximum assimilation

ITER DMS Present requirements for thermal load mitigation

Avoid runaway electron formation

- Assimilation of the order of 10²⁴ H atoms
- **?** Based on simplified 1D modelling

Recent simulations for DT RE sources: avoidance may not be compatible with EM load reduction, massive H injection may even facilitate RE formation

Self-consistent models required for hot tail formation and magnetic reconnection Coupling of RE codes to 3D MHD codes

Experiments and modelling on multiple injection efficiency

 $\Delta n_e \sim N_{injectors}$? Spatial distribution of Δn_e ?

Requirement for arrival time jitter to be identified (input for design)

Identify ideal fragment size distribution and velocity for maximum assimilation

Exploration of staggered injection scheme:

multiple H injection (raise the density) followed by H/Ne injection before TQ (mitigation of thermal and EM loads)

Injection trains of H pellets after TQ to target on early runaways?

ITER DMS Present requirements for thermal load mitigation

Avoid magnetic energy deposition on first wall (halo heat loads)

- ► Assimilation of 10²² Ne atoms
- **?** Based on DINA simulations without H injection
- Simulations with H

Addressed in JET experiments

Avoid first wall melting through localisation of radiation heat fluxes

- Radiation peaking < 4 during the TQ</p>
- Peaking defined for design purposes of in-vessel systems and implies superficial melting at high energies;

Initial experimental assessment done in DIII-D for toroidal peaking with a single injector

Peak radiation heat flux inversely proportional to N_{injection locations}?

Initial JOREK modelling shows reduction by $\sim 50\%$ for dual injection (180°)

- Main focus of KSTAR dual SPI project
 - 3D MHD modelling

ITER DMS Present requirements for RE impact mitigation

Dissipate energy of a fully formed RE beam through high-Z injection

- Assimilation of $>> 10^{24}$ Ne atoms
- Pased on DINA simulations (no full mitigation); Multiple issues:

RE scraping-off due to vertical displacement limited assimilation significant magnetic energy at time of final loss

Integrated simulations including background plasma
 3D MHD simulations of final loss and related magnetic energy conversion
 Conclude if argon is still required for the ITER DMS (significant technical and operational simplification)

Minimize RE impact through hydrogen injection

Not quantified yet

- **?** Experimental observations at JET and DIII-D with deuterium injection show benign termination, but are qualitative so far.
- Further experiments needed
 Integrated simulations including the companion plasma
 Simulations of the final loss with 3D MHD codes + RE fluid model.

ITER DMS Requirement for current quench control

Control the current quench rate to be $50 < t_{CQ} < 150$ ms

- Assimilation of $4x10^{21}$ to $5x10^{22}$ Ne atoms
- Based on DINA simulations without H injection with assumptions for the halo region
- Simulations with H (likely to reduce the required quantity of Ne)
 Validation through JET and DIII-D experiments, including simulations with e.g. KPRAD

ITER DMS Reaction time

Overall reaction time includes:

- Delay from trigger decision to trigger arrival at the PS
- Valve opening and gas release
- Pellet acceleration + flight time

Flight time estimate based on adiabatic expansion

Pellet release pressure ~4 MPa Barrel length: 0.5 m Flight tube length (equatorial port): 6.3 m H propellant

china eu india japan korea russia usa

ITER DMS Task Force

Objective

Physics and engineering studies to validate the design of the ITER DMS and to optimise the technology

Theory & Modelling (led by E. Nardon and A. Matsuyama)

Providing an umbrella to coordinate information exchange in the field Support to fill gaps and to perform ITER specific simulations Two main groups: runaway electrons / 3D MHD modelling with regular meetings

Experiments (led by N. Eidietis)

china eu india japan korea russia usa

Motivating and providing support for SPI experiments and appropriate diagnostics equipment

Presently two central projects: KSTAR and ASDEX

Technology (led by U. Kruezi and N. Balshaw)

Providing design justification and validation for the ITER DMS

Projects: Optical Pellet Diagnostic, Pellet Launching Unit, Fundamental Studies, Support Lab (component testing, e.g. shattering unit)

ITER DMS Task Force – KSTAR SPI Experiments

Assess the radiation distribution and density rise with multiple injection

2 injectors 180° apart 2 x 2 pellets of 7 mm + 2 pellets 4.5 mm Bolometer and interferometer upgrades

5 run days planned for Oct/Nov 2020

ITER DMS Task Force – ASDEX SPI Experiments

Assess optimum fragment size and velocity for maximum penetration and assimilation

3 injectors with individual flight tubes

- Pellet sizes 1, 4 or 8 mm
- 3 cameras to observe ablation

Bolometer/Diode upgrades

See G. Papp, MIT(SPI)-135

Approximate range of distributions for a 4 mm D₂ pellet

iter china eu india japan korea russia usa

The system must be robust with respect to availability, pellet arrival time and fragment size distribution

- Pellet Launching Unit development (punch and fast valve)
- Pellet forming, release and shattering studies
- Pellet Diagnostic

All to be scaled to 28.5 mm x 57 mm pellets

ITER DMS Task Force – Technology Development

Optical Pellet Diagnostic

Mirrors

Pellet integrity, velocity, and orientationPellet flight path alignment

ITER's **Disruption Mitigation System** has significant injection capabilities.

The focus in the next two years must be on how to use these to achieve the mitigation targets.

 \rightarrow Refinement of the requirements

Identifying deficiencies of the mitigation scheme has to lead to exploration of *alternative schemes* \rightarrow beyond the next 2-3 years

DMS TF material e.g. from meetings can be found <u>here</u> (ITER account required)