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A total of up to 32 pellets can be injected from the equatorial ports with a diameter of 28
mm and length to diameter ratio of L/D = 2. Each of these pellets can deliver up to 1023
argon atoms.

B.N. Breizman et al., Nucl. Fusion 59, 083001 (2019)
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https://www.youtube.com/watch?v=WNpt1lFWchs&t=234s
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Motivation

The similar overall effectiveness of the two injection methods suggest that SPI does not
offer significantly enhanced impurity mixing into the RE beam compared to MGI. This
implies that relativistic electrons are fully ablating the pellet fragments near the edge of
the beam, before any significant radial penetration can occur.
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• Are the pellets available for mitigation of the RE current
in ITER transparent for the REs with energies of the
order of or larger than 10 MeV?
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• Are the pellets available for mitigation of the RE current
in ITER transparent for the REs with energies of the
order of or larger than 10 MeV?

• Will the cryogenic pellet be sublimated instantly at the
edge of the RE beam in ITER?
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Runaway stopping distance
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Pellet transit time

τ
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Pellet transit time
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Pellet transit time

τ +τ p

τ p = dp vp
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τ RE = 2πN (a)R c

Time interval between 
two interaction
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Maximum number of interactions

Nmax = τ p τ RE

Maximum number of 
interactions 

τ RE = 2πN (a)R c

Time interval between 
two interaction

Nmax ≈1÷ 2

For ITER
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Pellet sublimation 

pRE ≈ 2πmec
2re
2c lnΛ freenREZp

Power input from the 
REs per individual atom 

Lsb ≡ vp ε sb pRE( )
Sublimation distance

Lsb ≤ dp

It is apparent that the pellet will sublimate 
immediately if 
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Pellet sublimation 

D2 Ne Ar
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Pellet sublimation 

D2 Ne Ar
jRE sb [A/cm2] 0.8 0.3 0.6

nRE sb [108 cm-3] 1.7 0.6 1.2
nRE uniform = 0.95×10

10 [cm-3]

jRE uniform = 45[A/cm
2]

In ITER
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Cloud expansion 

Natoms = 9×10
23

dp = 2.8 [cm]

nRE = 10
10 [cm−3]

vp ≈10
4 [cm s],

vexp ≈10
5 ÷106[cm s]

ITER-relevant 
parameters 
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Cloud expansion 
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Conclusions
• The pellets available for mitigation of the RE current are transparent for

the REs with energies of the order of or larger than 10 MeV;
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• The pellets available for mitigation of the RE current are transparent for

the REs with energies of the order of or larger than 10 MeV;

• The cryogenic pellet will likely be sublimated instantly at the edge of the
RE beam. This was already observed in recent experiments*;

• The sublimated pellet expands rapidly and spreads over the poloidal
cross-section of a tokamak on a millisecond time scale. By the time it
covers the poloidal cross-section, its temperature lies in a 1 eV range, and
the ionization fraction stays low. Further ionization of the material is
likely to occur during the toroidal expansion phase.

40
*D. Shiraki et al., Nucl. Fusion 58, 056006 (2018) 


